Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Waste Plastic Direct Extrusion Hangprinter, Aliaksei Petsiuk, Bharath Lavu, Rachel Dick, Joshua M. Pearce Aug 2022

Waste Plastic Direct Extrusion Hangprinter, Aliaksei Petsiuk, Bharath Lavu, Rachel Dick, Joshua M. Pearce

Michigan Tech Publications

As the additive manufacturing industry grows, it is compounding the global plastic waste problem. Distributed recycling and additive manufacturing (DRAM) offers an economic solution to this challenge, but it has been relegated to either small-volume 3D printers (limiting waste recycling throughput) or expensive industrial machines (limiting accessibility and lateral scaling). To overcome these challenges, this paper provides proof-of-concept for a novel, open-source hybrid 3D printer that combines a low-cost hanging printer design with a compression-screw-based end-effector that allows for the direct extrusion of recycled plastic waste in large expandable printing volumes. Mechanical testing of the resultant prints from 100% waste …


Open-Source Digitally Replicable Lab-Grade Scales, Benjamin R. Hubbard, Joshua M. Pearce Jun 2020

Open-Source Digitally Replicable Lab-Grade Scales, Benjamin R. Hubbard, Joshua M. Pearce

Michigan Tech Publications

This study provides designs for a low-cost, easily replicable open-source lab-grade digital scale that can be used as a precision balance. The design is such that it can be manufactured for use in most labs throughout the world with open-source RepRap-class material extrusion-based 3-D printers for the mechanical components and readily available open-source electronics including the Arduino Nano. Several versions of the design were fabricated and tested for precision and accuracy for a range of load cells. The results showed the open-source scale was found to be repeatable within 0.05 g with multiple load cells, with even better precision (0.005 …


Multidimensional Optimal Droop Control For Dc Microgrids In Military Applications, Kaitlyn J. Bunker, Michael D. Cook, Wayne Weaver, Gordon Parker Oct 2018

Multidimensional Optimal Droop Control For Dc Microgrids In Military Applications, Kaitlyn J. Bunker, Michael D. Cook, Wayne Weaver, Gordon Parker

Michigan Tech Publications

Reliability is a key consideration when microgrid technology is implemented in military applications. Droop control provides a simple option without requiring communication between microgrid components, increasing the control system reliability. However, traditional droop control does not allow the microgrid to utilize much of the power available from a solar resource. This paper applies an optimal multidimensional droop control strategy for a solar resource connected in a microgrid at a military patrol base. Simulation and hardware-in-the-loop experiments of a sample microgrid show that much more power from the solar resource can be utilized, while maintaining the system’s bus voltage around a …