Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

Edith Cowan University

Mechanical properties

2016

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Influence Of Nb On The Β → Α″ Martensitic Phase Transformation And Properties Of The Newly Designed Ti-Fe-Nb Alloys, Shima Ehtemam-Haghighi, Yujing Liu, Guanghui Cao, Lai-Chang Zhang Jan 2016

Influence Of Nb On The Β → Α″ Martensitic Phase Transformation And Properties Of The Newly Designed Ti-Fe-Nb Alloys, Shima Ehtemam-Haghighi, Yujing Liu, Guanghui Cao, Lai-Chang Zhang

Research outputs 2014 to 2021

A series of Ti-7Fe-xNb (x = 0, 1, 4, 6, 9, 11 wt.%) alloys was designed and cast to investigate the β → α″ martensitic phase transformation, β phase stability, the resulting microstructure and mechanical properties. Phase analysis revealed that only Ti-7Fe-11Nb alloy shows a single body-centred cubic β phase microstructure while the others are comprised of β and orthorhombic α″ phases. Moreover, Nb addition up to 11 wt.% enhances the stability and volume fraction of β phase in the microstructure, hence reducing the propensity of the alloy system to form α″ phase during quenching. Compressive yield strength and hardness …


The Heat Treatment Analysis Of E110 Case Hardening Steel, Majid Tolouei Rad, Eric Lichter Jan 2016

The Heat Treatment Analysis Of E110 Case Hardening Steel, Majid Tolouei Rad, Eric Lichter

Research outputs 2014 to 2021

This paper investigates mechanical and microstructural behaviour of E110 case hardening steel when subjected to different heat treatment processes includingquenching, normalizing and tempering. After heat treatment samples were subjected to mechanical and metallographic analysisand the properties obtained from applying different processes were analysed. The heat treatment process had certain effects on the resultant properties andmicrostructures obtained for E110 steel which are described in details. Quenching produced a martensitic microstructure characterized by significant increase in material’s hardness and a significant decreased in its impact energy. Annealed specimens produced a coarse pearlitic microstructure with minimal variation in hardness and impact energy. For …


Equiaxed Ti-Based Composites With High Strength And Large Plasticity Prepared By Sintering And Crystallizing Amorphous Powder, Lehua Liu, Chao Yang, L. M. Kang, Yan Long, Zhiyu Xiao, Peijie Li, Laichang Zhang Jan 2016

Equiaxed Ti-Based Composites With High Strength And Large Plasticity Prepared By Sintering And Crystallizing Amorphous Powder, Lehua Liu, Chao Yang, L. M. Kang, Yan Long, Zhiyu Xiao, Peijie Li, Laichang Zhang

Research outputs 2014 to 2021

High-performance titanium alloys with an equiaxed composite microstructure were achieved by sintering and crystallizing amorphous powder. By introducing a second phase in a β-Ti matrix, series of optimized Ti-Nb-Fe-Co-Al and Ti-Nb-Cu-Ni-Al composites, which have a microstructure composed of ultrafine-grained and equiaxed CoTi2 or (Cu,Ni)Ti2 precipitated phases surrounded by a ductile β-Ti matrix, were fabricated by sintering and crystallizing mechanically alloyed amorphous powder. The as-fabricated composites exhibit ultra-high ultimate compressive strength of 2585MPa and extremely large compressive plastic strain of around 40%, which are greater than the corresponding ones for most titanium alloys. In contrast, the alloy fabricated by …