Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Engineering

Machine Learning Prediction Of Glass Transition Temperature Of Conjugated Polymers From Chemical Structure, Amirhadi Alesadi, Zhiqiang Cao, Zhaofan Li, Song Zhang, Haoyu Zhao, Xiaodan Gu, Wenjie Xia Jun 2022

Machine Learning Prediction Of Glass Transition Temperature Of Conjugated Polymers From Chemical Structure, Amirhadi Alesadi, Zhiqiang Cao, Zhaofan Li, Song Zhang, Haoyu Zhao, Xiaodan Gu, Wenjie Xia

Faculty Publications

Predicting the glass transition temperature (Tg) is of critical importance as it governs the thermomechanical performance of conjugated polymers (CPs). Here, we report a predictive modeling framework to predict Tg of CPs through the integration of machine learning (ML), molecular dynamics (MD) simulations, and experiments. With 154 Tg data collected, an ML model is developed by taking simplified “geometry” of six chemical building blocks as molecular features, where side-chain fraction, isolated rings, fused rings, and bridged rings features are identified as the dominant ones for Tg. MD simulations further unravel the fundamental roles …


New Advances In Post-Installed Subsea Monitoring Systems For Structural And Flow Assurance Evaluation, Reza Asgharzadeh Shishavan, David Brower, John Hedengren, Alexis Brower Jun 2014

New Advances In Post-Installed Subsea Monitoring Systems For Structural And Flow Assurance Evaluation, Reza Asgharzadeh Shishavan, David Brower, John Hedengren, Alexis Brower

Faculty Publications

An overview of fiber optic sensors for temperature, pressure, strain, and fatigue of subsea structures is provided. Current progress details efforts to ensure proper installation and bonding to existing risers, flow-lines, mooring lines, trees, and other structures in actual subsea environments. Developments include clamp prototypes, bonding techniques, long-term fatigue analysis, sensor calibration, and temperature compensation. Fiber optic technology in subsea monitoring began over 20 years ago by migrating expertise from decommissioning of rocket motors. The first installations were on new installations of subsea pipelines, production risers, and drilling risers to measure strain and vibration for fatigue life monitoring. Of particular …


Advanced Deepwater Monitoring System, David Brower, John Hedengren, Reza Asgharzadeh Shishavan, Alexis Brower Jun 2013

Advanced Deepwater Monitoring System, David Brower, John Hedengren, Reza Asgharzadeh Shishavan, Alexis Brower

Faculty Publications

This study investigates new methods to improve deepwater monitoring and addresses installation of advanced sensors on ”already deployed” risers, flowlines, trees, and other deepwater devices. A major shortcoming of post installed monitoring systems in subsea is poor coupling between the sensor and structure. This study provided methods to overcome this problem. Both field testing in subsea environments and laboratory testing were performed. Test articles included actual flowline pipe and steel catenary risers up to twenty-four inches in diameter. A monitoring device resulting from this study can be installed in-situ on underwater structures and could enhance productivity and improve safety of …


Influence Of Some Design Variables On The Thermal Behavior Of A Lithium‐Ion Cell, Gerardine G. Botte, Bradley A. Johnson, Ralph E. White Jan 1999

Influence Of Some Design Variables On The Thermal Behavior Of A Lithium‐Ion Cell, Gerardine G. Botte, Bradley A. Johnson, Ralph E. White

Faculty Publications

No abstract provided.


Thermal Characteristics Of A Nickel-Hydrogen Battery, Junbom Kim, T. V. Nguyen, Ralph E. White Jan 1994

Thermal Characteristics Of A Nickel-Hydrogen Battery, Junbom Kim, T. V. Nguyen, Ralph E. White

Faculty Publications

The maximum allowable temperature difference inside a nickel-hydrogen battery to avoid water relocation was calculated by using a graphical method together with a vapor pressure vs. temperature correlation equation for water vapor over potassium hydroxide solution. An equation was developed for this maximum allowable temperature difference for vessel-wall temperatures from 0 to 30°C and potassium hydroxide concentrations from 20 to 32%. A heat-generation equation for the nickel-hydrogen battery was used to investigate the effect of the location of heat generation on the maximum temperature in the cell and the temperature distribution in the cell.


A Two-Dimensional Mathematical Model Of A Porous Lead Dioxide Electrode In A Lead-Acid Cell, E. C. Dimpault-Darcy, T. V. Nguyen, Ralph E. White Jan 1988

A Two-Dimensional Mathematical Model Of A Porous Lead Dioxide Electrode In A Lead-Acid Cell, E. C. Dimpault-Darcy, T. V. Nguyen, Ralph E. White

Faculty Publications

A two-dimensional mathematical model is presented for a lead dioxide electrode in a lead-acid cell. It is used to simulate the time dependent behavior of the electrode during discharge. The model contains six dependent variables: the concentration of the acid electrolyte, the porosity, the electrical potentials of the solid and solution phases, and the two directional components of the current density in the electrolyte. The effect of the electrode grid was included by varying the conductivity of the solid. Parameters such as electrode conductivity, electrode dimensions, and temperature are investigated to understand their effects on electrode discharge performance.


A Mathematical Model Of A Lead-Acid Cell: Discharge, Rest, And Charge, Hiram Gu, T. V. Nguyen, Ralph E. White Jan 1987

A Mathematical Model Of A Lead-Acid Cell: Discharge, Rest, And Charge, Hiram Gu, T. V. Nguyen, Ralph E. White

Faculty Publications

A mathematical model of a lead-acid cell is presented which includes the modeling of porous electrodes and various physical phenomena in detail. The model is used to study the dynamic behavior of the acid concentration, the porosity of the electrodes, and the state of charge of the cell during discharge, rest, and charge. The dependence of the performance of the cell on electrode thicknesses and operating temperature is also investigated.