Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

PDF

1992

Electrochemical electrodes

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Mathematical Modeling Of Cathodic Protection Using The Boundary Element Method With A Nonlinear Polarization Curve, J. F. Fan, S. N. R Pakalapati, T. V. Nguyen, Ralph E. White, R. B. Griffin Jan 1992

Mathematical Modeling Of Cathodic Protection Using The Boundary Element Method With A Nonlinear Polarization Curve, J. F. Fan, S. N. R Pakalapati, T. V. Nguyen, Ralph E. White, R. B. Griffin

Faculty Publications

The distributions of potential and current density around a cathodically protected pipeline in seawater were determined using the boundary element technique. A nonlinear polarization curve for a low carbon steel in artificial sea water was obtained from dc-potentiodynamic measurements and was fitted for use as the boundary condition on the pipe. The program was used to evaluate cases in which one or two aluminum sacrificial anodes are used to protect a low carbon steelpipe in seawater. The results show that the number of anodes, the sizes of the anodes, and the distance between the anodes and the cathode are of …


Parameter Sensitivity And Optimization Predictions Of A Hydrogen/Oxygen Alkaline Fuel Cell Model, Michael C. Kimble, Ralph E. White Jan 1992

Parameter Sensitivity And Optimization Predictions Of A Hydrogen/Oxygen Alkaline Fuel Cell Model, Michael C. Kimble, Ralph E. White

Faculty Publications

A mathematical model is used to predict parameter sensitivities and optimal design parameters for a hydrogen/oxygen alkaline fuel cell. A sensitivity analysis of the various transport and electrode kinetic parameters indicates which parameters have the most influence on the predicted current density and over which range of potentials these parameters affect the fuel-cell performance the most. This information can be used to decide which parameters should be optimized or determined more accurately through further modeling or experimental studies. The effect of various design parameters on the limiting current density are investigated to determine if optimal values exist for the parameters. …


Mathematical Modeling Of A Primary Zinc/Air Battery, Z. Mao, Ralph E. White Jan 1992

Mathematical Modeling Of A Primary Zinc/Air Battery, Z. Mao, Ralph E. White

Faculty Publications

The mathematical model developed by Sunu and Bennion has been extended to include the separator, precipitation of both solid ZnO and K2Zn(OH)4, and the air electrode, and has been used to investigate the behavior of a primary Zn-Air battery with respect to battery design features. Predictions obtained from the model indicate that anode material utilizationis predominantly limited by depletion of the concentration of hydroxide ions. The effect of electrode thickness on anode material utilization is insignificant, whereas material loading per unit volume has a great effect on anode material utilization; a higher loading lowers both the …


The Self-Discharge Of The Niooh/Ni(Oh)2 Electrode Constant Potential Study, Z. Mao, Ralph E. White Jan 1992

The Self-Discharge Of The Niooh/Ni(Oh)2 Electrode Constant Potential Study, Z. Mao, Ralph E. White

Faculty Publications

Hydrogen oxidation currents at a NiOOH/Ni(OH)2 electrode were measured directly at constant potentials for various hydrogen pressures and states of charge. It was found that the hydrogen oxidation current is linearly proportional to the hydrogen pressure at all electrode potentials and that the logarithm of the anodic current is a linear function of electrode potential. It was also found that hydrogen oxidation on the nickel substrate material was strongly inhibited by the presence of nickel hydroxide on the substrate surface. By comparing the currents for hydrogen oxidation and oxygen evolution on the NiOOH/Ni(OH)2 electrode and on a nickel …