Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

PDF

Missouri University of Science and Technology

Materials Science and Engineering

Keyword
Publication Year
Publication

Articles 1 - 30 of 842

Full-Text Articles in Engineering

Atom Probe Tomography Of Segregation At Grain Boundaries And Gas Bubbles In Neutron Irradiated U-10 Wt% Mo Fuel, Maalavan Arivu, Andrew Hoffman, Mukesh Bachhav, Assel Aitkaliyeva, Yaqiao Wu, Brandon Miller, Dennis Keiser, Jian Gan, Haiming Wen Jun 2024

Atom Probe Tomography Of Segregation At Grain Boundaries And Gas Bubbles In Neutron Irradiated U-10 Wt% Mo Fuel, Maalavan Arivu, Andrew Hoffman, Mukesh Bachhav, Assel Aitkaliyeva, Yaqiao Wu, Brandon Miller, Dennis Keiser, Jian Gan, Haiming Wen

Materials Science and Engineering Faculty Research & Creative Works

During Neutron Irradiation to Fission Densities > 5.2 X 1021 Fiss/cm3, Xe Agglomerates Forming Gas Bubbles of Varying Size within the U-Mo Fuel Matrix. Herein, Segregation of Fission Products to Xe Bubbles and Grain Boundaries (GB) Were Studied using Atom Probe Tomography (APT). Segregation Behavior Was Found to Vary among GBs, Small Bubbles (<10 >Nm), and Larger Bubbles (>10 Nm). Solid Fission Products Were Enriched at GBs and Larger Bubbles, But Not at Small Bubbles. a Denuded Zone Was Identified Adjacent to a > 10 Nm Xe Gas Bubble and a GB.


Quasi-Static And Dynamic Deformation Of Aluminum Matrix Composites Reinforced By Core-Shell Al35ti15cu10mn20cr20 High-Entropy Alloy Particulates, Dezhi Zhu, Tingting Chen, Xiaoqiang Jin, Haiming Wen, Zhiqiang Fu, Shengguan Qu May 2024

Quasi-Static And Dynamic Deformation Of Aluminum Matrix Composites Reinforced By Core-Shell Al35ti15cu10mn20cr20 High-Entropy Alloy Particulates, Dezhi Zhu, Tingting Chen, Xiaoqiang Jin, Haiming Wen, Zhiqiang Fu, Shengguan Qu

Materials Science and Engineering Faculty Research & Creative Works

Core-Shell Structured Particles Are Potential Reinforcement Agents For Metal Matrix Composites. In This Work, Aluminum Matrix Composites Reinforced With Core-Shell Structured Al35Ti15Cu10Mn20Cr20 High-Entropy Alloy (HEA) Particles Were Fabricated By Spark Plasma Sintering (SPS) And High-Temperature Diffusion Post-Treatment. Dynamic Compression Behavior And Adiabatic Shear Failure Mechanism In The Composites Were Investigated By Split Hopkinson Pressure Bar (SHPB), Scanning Electron Microscopy And Transmission Electron Microscopy. Results Showed That The Shell Thickness Of The Core-Shell Particles Ranged From 0.4 To 1.6 Μm, Which Were Formed By Thermal Diffusion Between HEA Core And Aluminum Alloy. The 30 Vol% (Al35Ti15Cu10Mn20Cr20)p/2024Al Composite Showed A High Compressive …


Application Of The Immobilized Low-Activity Waste Glass Corrosion Model To The Static Dissolution Of 24 Statistically-Designed Alkali-Borosilicate Waste Glasses, Sebastien N. Kerisit, James J. Neeway, Charmayne E. Lonergan, Benjamin Parruzot, Jarrod V. Crum, Richard C. Daniel, Gary L. Smith, R. Matthew Asmussen Apr 2024

Application Of The Immobilized Low-Activity Waste Glass Corrosion Model To The Static Dissolution Of 24 Statistically-Designed Alkali-Borosilicate Waste Glasses, Sebastien N. Kerisit, James J. Neeway, Charmayne E. Lonergan, Benjamin Parruzot, Jarrod V. Crum, Richard C. Daniel, Gary L. Smith, R. Matthew Asmussen

Materials Science and Engineering Faculty Research & Creative Works

Glass corrosion models that capture the complex mechanisms of the glass-water reaction enable the prediction of nuclear waste glass durability in disposal scenarios. Parameterization of such models is challenging because of the need to capture changes in corrosion behavior with time, reaction conditions, and glass composition. Here, we describe and employ the ILAW (immobilized low-activity waste) glass corrosion model (IGCM) in geochemical simulations of static dissolution tests, at two temperatures (40 °C and 90 °C), for a matrix of 24 enhanced low-activity waste (eLAW) glasses statistically designed to cover a processable composition space defined by 8 major glass components (Al …


Decoding Crystallization Behavior Of Aluminoborosilicate Glasses: From Structural Descriptors To Quantitative Structure – Property Relationship (Qspr) Based Predictive Models, Yingcheng Zhang, Marco Bertani, Alfonso Pedone, Randall E. Youngman, Gregory Tricot, Aditya Kumar, Ashutosh Goel Apr 2024

Decoding Crystallization Behavior Of Aluminoborosilicate Glasses: From Structural Descriptors To Quantitative Structure – Property Relationship (Qspr) Based Predictive Models, Yingcheng Zhang, Marco Bertani, Alfonso Pedone, Randall E. Youngman, Gregory Tricot, Aditya Kumar, Ashutosh Goel

Materials Science and Engineering Faculty Research & Creative Works

Successful decoding of structural descriptors controlling the crystallization in multicomponent functional glasses can pave the way for the transition from the trial-and-error approach and empirical modeling for glass/glass-ceramic composition design toward more rational and scientifically rigorous Quantitative Structure-Property Relationship (QSPR) based models. However, due to the compositional and structural complexity of multicomponent glasses and the longer time and length scales associated with nucleation, the development and validation of QSPR models are still in it's infancy. The work presented in the article is an attempt to leap forward in this pursuit by combining the strengths of experimental and computational materials science …


On The Use Of Machine Learning And Data-Transformation Methods To Predict Hydration Kinetics And Strength Of Alkali-Activated Mine Tailings-Based Binders, Sahil Surehali, Taihao Han, Jie Huang, Aditya Kumar, Narayanan Neithalath Mar 2024

On The Use Of Machine Learning And Data-Transformation Methods To Predict Hydration Kinetics And Strength Of Alkali-Activated Mine Tailings-Based Binders, Sahil Surehali, Taihao Han, Jie Huang, Aditya Kumar, Narayanan Neithalath

Electrical and Computer Engineering Faculty Research & Creative Works

The escalating production of mine tailings (MT), a byproduct of the mining industry, constitutes significant environmental and health hazards, thereby requiring a cost-effective and sustainable solution for its disposal or reuse. This study proposes the use of MT as the primary ingredient (≥70%mass) in binders for construction applications, thereby ensuring their efficient upcycling as well as drastic reduction of environmental impacts associated with the use of ordinary Portland cement (OPC). The early-age hydration kinetics and compressive strength of MT-based binders are evaluated with an emphasis on elucidating the influence of alkali activation parameters and the amount of slag or cement …


Effect Of The Filler Morphology On The Crystallization Behavior And Dielectric Properties Of The Polyvinylidene Fluoride-Based Composite, Suzana Filipović, Nina Obradović, Cole Corlett, William G. Fahrenholtz, Martin Rosenschon, Ekkehard Füglein, Radovan Dojčilović, Dragana Tošić, Jovana Petrović, Antonije Đorđević, Branislav Vlahović, Vladimir B. Pavlović Mar 2024

Effect Of The Filler Morphology On The Crystallization Behavior And Dielectric Properties Of The Polyvinylidene Fluoride-Based Composite, Suzana Filipović, Nina Obradović, Cole Corlett, William G. Fahrenholtz, Martin Rosenschon, Ekkehard Füglein, Radovan Dojčilović, Dragana Tošić, Jovana Petrović, Antonije Đorđević, Branislav Vlahović, Vladimir B. Pavlović

Materials Science and Engineering Faculty Research & Creative Works

Ceramic/polymer composites can be chemically stable, mechanically strong, and flexible, which make them candidates for electric devices, such as pressure or temperature sensors, energy storage or harvesting devices, actuators, and so forth. Depending on the application, various electrical properties are of importance. Polymers usually have low dielectric permittivity, but increased dielectric permittivity can be achieved by the addition of the ceramic fillers with high dielectric constant. With the aim to enhance dielectric properties of the composite without loss of flexibility, 5 wt.% of BaTiO3-Fe2O3 powder was added into a polyvinylidene fluoride matrix. The powder was …


A Phenomenological Thermodynamic Energy Density Function For Ferroelectric Wurtzite Al1−Xscxn Single Crystals, Yijia Gu, Andrew C. Meng, Aiden Ross, Long Qing Chen Mar 2024

A Phenomenological Thermodynamic Energy Density Function For Ferroelectric Wurtzite Al1−Xscxn Single Crystals, Yijia Gu, Andrew C. Meng, Aiden Ross, Long Qing Chen

Materials Science and Engineering Faculty Research & Creative Works

A Landau-Devonshire thermodynamic energy density function for ferroelectric wurtzite aluminum scandium nitride (Al1−xScxN) solid solution is developed. It is parametrized using available experimental and theoretical data, enabling the accurate reproduction of composition-dependent ferroelectric properties, such as spontaneous polarization, dielectric permittivity, and piezoelectric constants, for both bulk and thin films. The maximum concentration of Sc for the wurtzite structure to remain ferroelectric is found to be 61 at. %. A detailed analysis of Al1−xScxN thin films reveals that the ferroelectric phase transition and properties are insensitive to substrate strain. This study lays the foundation for quantitative modeling of novel ferroelectric wurtzite …


Toward Smart And Sustainable Cement Manufacturing Process: Analysis And Optimization Of Cement Clinker Quality Using Thermodynamic And Data-Informed Approaches, Jardel P. Gonçalves, Taihao Han, Gaurav Sant, Narayanan Neithalath, Jie Huang, Aditya Kumar Mar 2024

Toward Smart And Sustainable Cement Manufacturing Process: Analysis And Optimization Of Cement Clinker Quality Using Thermodynamic And Data-Informed Approaches, Jardel P. Gonçalves, Taihao Han, Gaurav Sant, Narayanan Neithalath, Jie Huang, Aditya Kumar

Electrical and Computer Engineering Faculty Research & Creative Works

Cement manufacturing is widely recognized for its harmful impacts on the natural environment. In recent years, efforts have been made to improve the sustainability of cement manufacturing through the use of renewable energy, the capture of CO2 emissions, and partial replacement of cement with supplementary cementitious materials. To further enhance sustainability, optimizing the cement manufacturing process is essential. This can be achieved through the prediction and optimization of clinker phases in relation to chemical compositions of raw materials and manufacturing conditions. Cement clinkers are produced by heating raw materials in kilns, where both raw material compositions and processing conditions …


A Priori Procedure To Establish Spinodal Decomposition In Alloys, Simon Divilov, Hagen Eckert, Cormac Toher, Rico Friedrich, Adam C. Zettel, Donald W. Brenner, William G. Fahrenholtz, Douglas E. Wolfe, Eva Zurek, Jon Paul Maria, Nico Hotz, Xiomara Campilongo, Stefano Curtarolo Mar 2024

A Priori Procedure To Establish Spinodal Decomposition In Alloys, Simon Divilov, Hagen Eckert, Cormac Toher, Rico Friedrich, Adam C. Zettel, Donald W. Brenner, William G. Fahrenholtz, Douglas E. Wolfe, Eva Zurek, Jon Paul Maria, Nico Hotz, Xiomara Campilongo, Stefano Curtarolo

Materials Science and Engineering Faculty Research & Creative Works

Spinodal decomposition can improve a number of essential properties in materials, especially hardness. Yet, the theoretical prediction of the onset of this phenomenon (e.g., temperature) and its microstructure (e.g., wavelength) often requires input parameters coming from costly and time-consuming experimental efforts, hindering rational materials optimization. Here, we present a procedure where such parameters are not derived from experiments. First, we calculate the spinodal temperature by modeling nucleation in the solid solution while approaching the spinode boundary. Then, we compute the spinodal wavelength self-consistently using a few reasonable approximations. Our results show remarkable agreement with experiments and, for NiRh, the calculated …


The Thermophysical Properties Of Tco2, Hong Zhong, Jason Lonergan, John S. Mccloy, Scott P. Beckman Mar 2024

The Thermophysical Properties Of Tco2, Hong Zhong, Jason Lonergan, John S. Mccloy, Scott P. Beckman

Materials Science and Engineering Faculty Research & Creative Works

Technetium-99 Is A Highly Radioactive Isotope With A Long Half-Life That Is Common In Nuclear Waste. It Volatizes At A Low Temperature, Which Poses A Significant Challenge To The Clean-Up And Containment Processes. Due To Difficulties In Purifying Technetium Compounds, Their Thermophysical Properties Have Not Been Measured Or Calculated. Here, First Principle Methods Are Used Along With The Quasi Quasi-Harmonic Harmonic Approximation To Compute The Debye Temperature, Volumetric Thermal Expansion Coefficient, Bulk Modulus, And Heat Capacity Of Rutile TcO2 For Temperatures Ranging From 0 To 1500 K And Applied Pressures Ranging From 0 To 255 GPa. The Computed Atomic Structures …


Fly Ash Coated With Alumina Sol For Improving Strength And Thermal Insulation Of Mullite Porous Ceramics, Minghui Li, Peilin Li, Qingqing Gao, Saisai Li, Ruoyu Chen, Haiming Wen, Canhua Li Feb 2024

Fly Ash Coated With Alumina Sol For Improving Strength And Thermal Insulation Of Mullite Porous Ceramics, Minghui Li, Peilin Li, Qingqing Gao, Saisai Li, Ruoyu Chen, Haiming Wen, Canhua Li

Materials Science and Engineering Faculty Research & Creative Works

The manufacturing of mullite porous ceramics with high strength and low thermal conductivity was achieved through foam gel-casting processes using fly ash coated with alumina sol layers. This research aimed to investigate the effect of alumina sol concentration on foaming slurry rheology, as well as the influence of alumina sol coating layers on the microstructure, phase compositions and properties of the resulting mullite porous ceramics. Increasing the alumina sol concentration from 5 to 20 wt% improved both the viscosity and thixotropy of the foaming slurries while enhanced the shear thinning behavior. Porous ceramics prepared with fly ash coated with alumina …


Pisa Printing Microneedles With Controllable Aqueous Dissolution Kinetics, Aaron Priester, Jimmy Yeng, Yuwei Zhang, Krista Hilmas, Risheng Wang, Anthony J. Convertine Feb 2024

Pisa Printing Microneedles With Controllable Aqueous Dissolution Kinetics, Aaron Priester, Jimmy Yeng, Yuwei Zhang, Krista Hilmas, Risheng Wang, Anthony J. Convertine

Chemistry Faculty Research & Creative Works

This study focused on the development of high-resolution polymeric structures using polymer-induced self-assembly (PISA) printing with commercially available digital light-processing (DLP) printers. Significantly, soluble solids could be 3D-printed using this methodology with controllable aqueous dissolution rates. This was achieved using a highly branched macrochain transfer agent (macro-CTA) containing multiple covalently attached CTA groups. In this work, the use of acrylamide as the self-assembling monomer in isopropyl alcohol was explored with the addition of N-(butoxymethyl)acrylamide to modulate the aqueous dissolution kinetics. PISA-printed microneedles were observed to have feature sizes as small as 27 μm, which was close to the resolution limit …


Understanding Roles And Evaluating Reactivity Of Fly Ashes In Calcium Aluminate Binders, Sai Akshay Ponduru, Taihao Han, Jie Huang, Narayanan Neithalath, Gaurav Sant, Aditya Kumar Feb 2024

Understanding Roles And Evaluating Reactivity Of Fly Ashes In Calcium Aluminate Binders, Sai Akshay Ponduru, Taihao Han, Jie Huang, Narayanan Neithalath, Gaurav Sant, Aditya Kumar

Electrical and Computer Engineering Faculty Research & Creative Works

Calcium aluminate cement (CAC) is an alternative to Portland cement, valued for its superior early strength and thermal resistance. Partially replacing CAC with Fly ash (FA) can reduce carbon footprint and production costs of CAC, producing sustainable cementitious binders. This research investigates on various properties (i.e., hydration kinetics; phase assemblage evolution; compressive strength) of [CAC + FA] binders. Using 13 distinct FAs, up to 50% of CAC was substituted. The study measures hydration kinetics, compressive strength, and employs the number of constraints to estimate FA reactivity. Advanced quantitative analysis draws links between hydration kinetics and compressive strength and elucidate the …


Hanford Low-Activity Waste Vitrification: A Review, José Marcial, Brian J. Riley, Albert A. Kruger, Charmayne E. Lonergan, John D. Vienna Jan 2024

Hanford Low-Activity Waste Vitrification: A Review, José Marcial, Brian J. Riley, Albert A. Kruger, Charmayne E. Lonergan, John D. Vienna

Materials Science and Engineering Faculty Research & Creative Works

This Paper Summarizes the Vast Body of Literature (Over 200 Documents) Related to Vitrification of the Low-Activity Waste (LAW) Fraction of the Hanford Tank Wastes. Details Are Provided on the Origins of the Hanford Tank Wastes that Resulted from Nuclear Operations Conducted between 1944 and 1989 to Support Nuclear Weapons Production. Waste Treatment Processes Are Described, Including the Baseline Process to Separate the Tank Waste into LAW and High-Level Waste Fractions, and the LAW Vitrification Facility Being Started at Hanford. Significant Focus is Placed on the Glass Composition Development and the Property-Composition Relationships for Hanford LAW Glasses. Glass Disposal Plans …


Ultra-Fast Annealing Improves Snr And Long-Term Stability Of A Highly Multiplexed Line-By-Line Fbg Array Inscribed By Femtosecond Laser In A Coreless Fiber For Extreme-Temperature Applications, Farhan Mumtaz, Bohong Zhang, Jeffrey D. Smith, Ronald J. O'Malley, Rex E. Gerald, Jie Huang Jan 2024

Ultra-Fast Annealing Improves Snr And Long-Term Stability Of A Highly Multiplexed Line-By-Line Fbg Array Inscribed By Femtosecond Laser In A Coreless Fiber For Extreme-Temperature Applications, Farhan Mumtaz, Bohong Zhang, Jeffrey D. Smith, Ronald J. O'Malley, Rex E. Gerald, Jie Huang

Electrical and Computer Engineering Faculty Research & Creative Works

This study reports the fabrication of an 4th-order line-by-line Fiber Bragg Gratings (FBG) array using femtosecond laser inscription within a highly multimode coreless optical fiber, with a particular focus on achieving substantial multiplexing capabilities. An ultra-fast annealing procedure is employed, resulting in an impressive enhancement of the FBG sensor's fringe visibility by approximately 13 dB, signifying a notable improvement of approximately ~4 dB. This substantial enhancement contributes to the long-term stability and performance of the multiplexed FBG array in extreme temperature conditions. The systematic fabrication approach employed for the multiplexed FBG array guarantees a high signal-to-noise ratio (SNR) for each …


A Super-Hard High Entropy Boride Containing Hf, Mo, Ti, V, And W, Suzana Filipovic, Nina Obradovic, Greg E. Hilmas, William G. Fahrenholtz, Donald W. Brenner, Jon Paul Maria, Douglas E. Wolfe, Eva Zurek, Xiomara Campilongo, Stefano Curtarolo Jan 2024

A Super-Hard High Entropy Boride Containing Hf, Mo, Ti, V, And W, Suzana Filipovic, Nina Obradovic, Greg E. Hilmas, William G. Fahrenholtz, Donald W. Brenner, Jon Paul Maria, Douglas E. Wolfe, Eva Zurek, Xiomara Campilongo, Stefano Curtarolo

Materials Science and Engineering Faculty Research & Creative Works

Super-Hard (Hf,Mo,Ti,V,W)B2 Was Synthesized by Boro-Carbothermal Reduction and Densified by Spark Plasma Sintering. This Composition Was Produced for the First Time as a Single-Phase Ceramic in the Present Research. the Optimized Ceramic Had a Single Hexagonal AlB2-Type Crystalline Phase with a Grain Size of 3.8 µm and Homogeneous Distribution of the Constituent Metals. the Vickers Hardness Exhibited the Indentation Size Effect, Increasing from 27 GPa at a Load of 9.8 N to as High as 66 GPa at a Load of 0.49 N. This is the Highest Hardness Reported to Date for High Entropy Boride Ceramics.


Cf/Sic Ceramic Matrix Composites With Extraordinary Thermomechanical Properties Up To 2000 °C, Min Sung Park, Jian Gu, Heesoo Lee, Sea Hoon Lee, Lun Feng, William Fahrenholtz Jan 2024

Cf/Sic Ceramic Matrix Composites With Extraordinary Thermomechanical Properties Up To 2000 °C, Min Sung Park, Jian Gu, Heesoo Lee, Sea Hoon Lee, Lun Feng, William Fahrenholtz

Materials Science and Engineering Faculty Research & Creative Works

The thermomechanical properties of carbon fiber reinforced silicon carbide ceramic matrix composites (Cf/SiC CMCs) were studied up to 2000 °C using high temperature in situ flexural testing in argon. The CMC specimens were fabricated using an ultrahigh concentration (66 vol%) aqueous slurry containing nano-sized silicon carbide powder. The SiC powder compacts were obtained by drying the slurry and were densified using the precursor impregnation and pyrolysis (PIP) method with field assisted sintering technology/spark plasma sintering (FAST/SPS). The high relative density of the SiC green body (77.6%) enabled densification within 2.5 days using four PIP cycles. In contrast, conventional PIP processes …


Thermodynamic Analysis Of Metal Segregation In Dual Phase High Entropy Ceramics, Steven M. Smith, William G. Fahrenholtz, Gregory E. Hilmas, Stefano Curtarolo Jan 2024

Thermodynamic Analysis Of Metal Segregation In Dual Phase High Entropy Ceramics, Steven M. Smith, William G. Fahrenholtz, Gregory E. Hilmas, Stefano Curtarolo

Materials Science and Engineering Faculty Research & Creative Works

Equilibrium Gibbs' free energy calculations were used to determine metal segregation trends between boride and carbide solid solutions containing two metals that are relevant to dual phase high entropy ceramics. The model predicted that Ti had the strongest tendency to segregate to the boride phase followed by Zr, Nb, Mo, V, Hf, and Ta, which matches experimental results of measured compositions. The ratio of a metal in the carbide phase to the content of the same metal in the corresponding metal boride had a linear trend with the change in standard Gibbs' free energy of reaction for a metal carbide …


Dielectric Properties Of Polycrystalline And Single Crystal (100) Strontium Titanate From 4 To 295 K, Hung Trinh, Alan Devoe, Fatih Dogan Jan 2024

Dielectric Properties Of Polycrystalline And Single Crystal (100) Strontium Titanate From 4 To 295 K, Hung Trinh, Alan Devoe, Fatih Dogan

Materials Science and Engineering Faculty Research & Creative Works

The dielectric properties of single crystal and polycrystalline SrTiO3 (ST) were investigated from 295 to 4 K. Relative permittivity (εr) and loss tangent (tan(δ)) were measured systematically as a function of direct current (DC) voltage (0 V/cm to 800 V/cm), frequency (100 Hz to 1 MHz), and temperature (295 K to 4 K) for type (100) single crystal SrTiO3 (SC-ST) and for polycrystalline SrTiO3 (PC-ST). Calculated equivalent series resistance (ESR) data are also reported. Overall, the permittivity of ST showed a dependence on temperature, DC voltage, and frequency. Dependences on voltage and frequency were only observed at …


Additive Manufacturing Of Novel Lightweight Insulation Refractory With Hierarchical Pore Structures By Direct Ink Writing, Saisai Li, Jiaxuan Xin, Ruoyu Chen, Haiming Wen Jan 2024

Additive Manufacturing Of Novel Lightweight Insulation Refractory With Hierarchical Pore Structures By Direct Ink Writing, Saisai Li, Jiaxuan Xin, Ruoyu Chen, Haiming Wen

Materials Science and Engineering Faculty Research & Creative Works

A direct ink writing process using fly ash foaming slurries was employed for the additive manufacturing of lightweight mullite insulation refractory with hierarchical pore structures. The viscosity, thixotropy, and shear thinning behavior of the inks were analyzed to investigate the effect of the inorganic binder and dispersant of the foaming inks. A slurry exhibiting excellent rheological characteristics was identified, consisting of 45 wt% fly ash floating beads, 55 wt% water, 3.0 wt% additional dispersant, and 6.0 wt% additional binder. Furthermore, through the optimization of printing parameters such as printing pressure and printing speed, notable enhancements were achieved in the pore …


Morphology And Particle Size (Maps) Exercise: Testing The Applications Of Image Analysis And Morphology Descriptions For Nuclear Forensics, Stuart A. Dunn, Ian J. Schwerdt, David E. Meier, Naomi E. Marks, Thomas Shaw, Alexa Hanson, Kari Sentz, Meena Said, Richard A. Clark, Kyle A. Makovsky, Jason M. Lonergan, Matthew Gilbert Jan 2024

Morphology And Particle Size (Maps) Exercise: Testing The Applications Of Image Analysis And Morphology Descriptions For Nuclear Forensics, Stuart A. Dunn, Ian J. Schwerdt, David E. Meier, Naomi E. Marks, Thomas Shaw, Alexa Hanson, Kari Sentz, Meena Said, Richard A. Clark, Kyle A. Makovsky, Jason M. Lonergan, Matthew Gilbert

Materials Science and Engineering Faculty Research & Creative Works

Image analysis techniques have been applied and shown to be a valuable tool in nuclear forensics analysis. The interlaboratory exercise reported here has tested quantitative and qualitative approaches for characterizing nuclear materials. Particle size, surface features and morphology descriptions were compared by four laboratories on a common image set generated by Scanning Electron Microscopy and Digital Light Microscopy. Quantitative analysis of the image sets through the Morphological Analysis for Materials software highlighted the strength of image analysis, but also that the application of the software alone can introduce significant bias in the analysis. Qualitative morphology descriptions following the process outlined …


Dielectric Properties Of Polycrystalline And Single-Crystal Magnesium Oxide At High Temperatures, Alan Devoe, Hung Trinh, Fatih Dogan Jan 2024

Dielectric Properties Of Polycrystalline And Single-Crystal Magnesium Oxide At High Temperatures, Alan Devoe, Hung Trinh, Fatih Dogan

Materials Science and Engineering Faculty Research & Creative Works

The electrical properties of high-purity magnesium oxide (MgO) samples sintered between 1500 and 1650°C were investigated up to 800°C. Dielectric constant, loss tangent and electrical conductivity were measured between 25 and 800°C. Optimum electrical properties were obtained for the sample sintered at 1600°C. The impurities in polycrystalline and single crystal MgO were discussed to understand their effect on electrical properties and the role of grain boundaries. Higher dielectric losses of polycrystalline samples as compared to the single crystal MgO were attributed to the presence of grain boundaries. MgO could be a useful dielectric material for capacitor applications up to 600°C.


Spark Plasma Sintering Of Magnesium Titanate Ceramics, Suzana Filipović, Nina Obradović, William G. Fahrenholtz, Steven Smith, Miljana Mirković, Adriana Peleš Tadić, Jovana Petrović, Antonije Đorđević Jan 2024

Spark Plasma Sintering Of Magnesium Titanate Ceramics, Suzana Filipović, Nina Obradović, William G. Fahrenholtz, Steven Smith, Miljana Mirković, Adriana Peleš Tadić, Jovana Petrović, Antonije Đorđević

Materials Science and Engineering Faculty Research & Creative Works

Magnesium titanate ceramics were prepared by reactive spark plasma sintering (SPS) at 1200 °C for 5 min. Prior to sintering, MgO and TiO2 powders were mixed by high energy ball milling (HEBM) for 15, 30, or 60 min. The effect of milling time on phase composition was analyzed by X-ray diffraction (XRD) for milled powders and sintered specimens. The morphology of the sintered ceramics was investigated by scanning electron microscopy (SEM), while elemental distribution was determined by energy dispersive spectroscopy (EDS). The presence of the MgTi2O5 phase was detected in XRD and was confirmed by EDS analysis. Microcracking was …


Phosphate-Based Dechlorination Of Electrorefiner Salt Waste Using A Phosphoric Acid Precursor, Paige Murray, Harmony Werth, Sean Sullivan, Brian J. Riley, Michael Simpson, Charmayne E. Lonergan, Krista Carlson Jan 2024

Phosphate-Based Dechlorination Of Electrorefiner Salt Waste Using A Phosphoric Acid Precursor, Paige Murray, Harmony Werth, Sean Sullivan, Brian J. Riley, Michael Simpson, Charmayne E. Lonergan, Krista Carlson

Materials Science and Engineering Faculty Research & Creative Works

Electrochemical processing of spent nuclear fuel in molten chloride salts results in radioactive salt waste. Chlorine removal from the salt has been identified as an effective and efficient first step in the management of high-level waste. In this work, a simple salt was dechlorinated with a phosphoric acid phosphate precursor, resulting in a glassy dechlorinated product. The dechlorination efficacy was evaluated in air and argon environments. This work serves as an initial step to advance the technological readiness level of h3po4-based dechlorination step toward implementation of iron phosphate waste forms to immobilize electrochemical fuel reprocessing salt waste streams.


Oxidation Of Additively Manufactured Zrb2–Sic In Air And In Co2 At 700–1000 °C, Marharyta Lakusta, Nicholas M. Timme, Abid H. Rafi, Jeremy Lee Watts, M. (Ming) C. (Chuan) Leu, Gregory E. Hilmas, William G. Fahrenholtz, David W. Lipke Jan 2024

Oxidation Of Additively Manufactured Zrb2–Sic In Air And In Co2 At 700–1000 °C, Marharyta Lakusta, Nicholas M. Timme, Abid H. Rafi, Jeremy Lee Watts, M. (Ming) C. (Chuan) Leu, Gregory E. Hilmas, William G. Fahrenholtz, David W. Lipke

Materials Science and Engineering Faculty Research & Creative Works

Oxidation behavior of additively manufactured zrb2–sic in air and in co2 is reported in the temperature range of 700–1000 °c. Observed scale morphologies in air and in co2 were similar, featuring an outer borosilicate layer and an inner porous zirconia layer containing partially oxidized silicon carbide particles and remnant borosilicate products. Oxide scale thicknesses and parabolic scaling constants in air were approximately twice those observed in co2 across all studied temperatures. Activation energies for oxidation of 140 ± 20 kj/mol in air and 110 ± 20 kj/mol in co2 were determined, indicating similar diffusion processes that appear to be rate-limiting. …


Modeling Hydration Kinetics Of Sustainable Cementitious Binders Using An Advanced Nucleation And Growth Approach, Taihao Han, Jie Huang, Gaurav Sant, Narayanan Neithalath, Ashutosh Goel, Aditya Kumar Nov 2023

Modeling Hydration Kinetics Of Sustainable Cementitious Binders Using An Advanced Nucleation And Growth Approach, Taihao Han, Jie Huang, Gaurav Sant, Narayanan Neithalath, Ashutosh Goel, Aditya Kumar

Electrical and Computer Engineering Faculty Research & Creative Works

Supplementary cementitious materials (SCMs) are utilized to partially substitute Portland cement (PC) in binders, reducing carbon-footprint and maintaining excellent performance. Nonetheless, predicting the hydration kinetics of [PC + SCM] binders is challenging for current analytical models due to the extensive diversity of chemical compositions and molecular structures present in both SCMs and PC. This study develops an advanced phase boundary nucleation and growth (pBNG) model to yield a priori predictions of hydration kinetics—i.e., time-resolved exothermic heat release profiles—of [PC + SCM] binders. The advanced pBNG model integrates artificial intelligence as an add-on, enabling it to accurately simulate hydration kinetics for …


Vacancy Ordering In Zirconium Carbide With Different Carbon Contents, Yue Zhou, Jeremy Lee Watts, Cheng Li, William Fahrenholtz, Gregory E. Hilmas Nov 2023

Vacancy Ordering In Zirconium Carbide With Different Carbon Contents, Yue Zhou, Jeremy Lee Watts, Cheng Li, William Fahrenholtz, Gregory E. Hilmas

Materials Science and Engineering Faculty Research & Creative Works

Zirconium carbide (ZrCx) ceramics with different carbon contents were prepared by reactive hot-pressing. The rock-salt structure of ZrCx was the only phase detected by x-ray diffraction of the hot pressed ceramics. The relative densities of ZrCx decreased as carbon content increased, in general. The actual carbon contents were measured by completely oxidizing the ZrCx ceramics to ZrO2. For most compositions, the actual carbon contents were higher than nominal batched compositions, presumably due to carbon uptake from the graphite furnace and hot press dies. Selected area electron diffraction and neutron powder diffraction revealed the presence of carbon vacancy ordering …


Boosting Snr Of Cascaded Fbgs In A Sapphire Fiber Through A Rapid Heat Treatment, Farhan Mumtaz, Hanok Tekle, Bohong Zhang, Jeffrey D. Smith, Ronald J. O'Malley, Rex E. Gerald, Jie Huang Nov 2023

Boosting Snr Of Cascaded Fbgs In A Sapphire Fiber Through A Rapid Heat Treatment, Farhan Mumtaz, Hanok Tekle, Bohong Zhang, Jeffrey D. Smith, Ronald J. O'Malley, Rex E. Gerald, Jie Huang

Electrical and Computer Engineering Faculty Research & Creative Works

This Letter reports the performance of femtosecond (fs) laser-written distributed fiber Bragg gratings (FBGs) under high-temperature conditions up to 1600°C and explores the impact of rapid heat treatment on signal-to-noise ratio (SNR) enhancement. FBGs are essential for reliable optical sensing in extreme temperature environments. Comprehensive tests demonstrate the remarkable performance and resilience of FBGs at temperatures up to 1600°C, confirming their suitability for deployment in such conditions. The study also reveals significant fringe visibility improvements of up to ∼10 dB on a 1-m-long sapphire optical fiber through rapid heat treatment, representing a first-time achievement to the best of our knowledge. …


Mechanism Underlying Effect Of Expansive Agent And Shrinkage Reducing Admixture On Mechanical Properties And Fiber-Matrix Bonding Of Fiber-Reinforced Mortar, Kamran Aghaee, Taihao Han, Aditya Kumar, Kamal Khayat Oct 2023

Mechanism Underlying Effect Of Expansive Agent And Shrinkage Reducing Admixture On Mechanical Properties And Fiber-Matrix Bonding Of Fiber-Reinforced Mortar, Kamran Aghaee, Taihao Han, Aditya Kumar, Kamal Khayat

Materials Science and Engineering Faculty Research & Creative Works

Expansive agent (EA) and shrinkage reducing admixture (SRA) are utilized to reduce shrinkage and risk of cracking in concrete. EA compensates shrinkage by initial expansion, and SRA reduces surface tension in the pore fluid. Although EA and SRA effectively reduce shrinkage, they can impair micro-structure of concrete at high contents. The shrinkage reduction effect of EA and SRA is well known; however, there is limited knowledge about their negative effect on microstructure and fiber matrix interfacial transition zone (ITZ). The current study explores the effect of using 10 % CaO-based EA, 2 % SRA, and their combination on mechanical, shrinkage, …


On The Prediction Of The Mechanical Properties Of Limestone Calcined Clay Cement: A Random Forest Approach Tailored To Cement Chemistry, Taihao Han, Bryan K. Aylas-Paredes, Jie Huang, Ashutosh Goel, Narayanan Neithalath, Aditya Kumar Oct 2023

On The Prediction Of The Mechanical Properties Of Limestone Calcined Clay Cement: A Random Forest Approach Tailored To Cement Chemistry, Taihao Han, Bryan K. Aylas-Paredes, Jie Huang, Ashutosh Goel, Narayanan Neithalath, Aditya Kumar

Materials Science and Engineering Faculty Research & Creative Works

Limestone calcined clay cement (LC3) is a sustainable alternative to ordinary Portland cement, capable of reducing the binder's carbon footprint by 40% while satisfying all key performance metrics. The inherent compositional heterogeneity in select components of LC3, combined with their convoluted chemical interactions, poses challenges to conventional analytical models when predicting mechanical properties. Although some studies have employed machine learning (ML) to predict the mechanical properties of LC3, many have overlooked the pivotal role of feature selection. Proper feature selection not only refines and simplifies the structure of ML models but also enhances these models' prediction performance and interpretability. This …