Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

PDF

Mechanical Engineering

UAV

2005

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Static And Dynamic Obstacle Avoidance For Miniature Air Vehicles, Jeffery Brian Saunders, Brandon Call, Andrew Curtis, Randal W. Beard, Timothy W. Mclain Sep 2005

Static And Dynamic Obstacle Avoidance For Miniature Air Vehicles, Jeffery Brian Saunders, Brandon Call, Andrew Curtis, Randal W. Beard, Timothy W. Mclain

Faculty Publications

Small unmanned air vehicles are limited in sensor weight and power such that detection and avoidance of unknown obstacles during flight is difficult. This paper presents a low power low weight method of detection using a laser range finder. In addition, a rapidly-exploring random tree algorithm to generate waypoint paths around obstacles known a priori is presented, and a dynamic geometric algorithm to generate paths around detected obstacles is derived. The algorithms are demonstrated in simulation and in flight tests on a fixed-wing miniature air vehicle (MAV).


Decentralized Perimeter Surveillance Using A Team Of Uavs, Timothy Mclain, Randal W. Beard, Derek Kingston, Ryan S. Holt, David W. Casbeer Aug 2005

Decentralized Perimeter Surveillance Using A Team Of Uavs, Timothy Mclain, Randal W. Beard, Derek Kingston, Ryan S. Holt, David W. Casbeer

Faculty Publications

This paper poses the cooperative perimeter-surveillance problem and offers a decentralized solution that accounts for perimeter growth (expanding or contracting) and insertion/deletion of team members. By identifying and sharing the critical coordination information and by exploiting the known communication topology, only a small communication range is required for accurate performance. Simulation and hardware results are presented that demonstrate the applicability of the solution.


Forest Fire Monitoring With Multiple Small Uavs, David W. Casbeer, Randal W. Beard, Timothy W. Mclain, Sai-Ming Li, Raman K. Mehra Jun 2005

Forest Fire Monitoring With Multiple Small Uavs, David W. Casbeer, Randal W. Beard, Timothy W. Mclain, Sai-Ming Li, Raman K. Mehra

Faculty Publications

Frequent and detailed updates of the development of a forest fire are essential for effective and safe fire fighting. Since a forest fire is typically inaccessible by ground vehicles due to mountainous terrain, small Unmanned Air Vehicles (UAVs) are emerging as a promising solution to the problem of monitoring large forest fires. In this paper we present an effective path planning algorithm for a UAV utilizing infrared images that are collected on-board in realtime. In order to demonstrate the effectiveness of our path planning algorithm in realistic scenarios, we implemented the forest fire propagation model EMBYR to simulate the time …


Autonomous Vehicle Technologies For Small Fixed-Wing Uavs, Randal Beard, Derek Kingston, Morgan Quigley, Deryl Snyder, Reed Christiansen, Walt Johnson, Timothy Mclain, Michael A. Goodrich Jan 2005

Autonomous Vehicle Technologies For Small Fixed-Wing Uavs, Randal Beard, Derek Kingston, Morgan Quigley, Deryl Snyder, Reed Christiansen, Walt Johnson, Timothy Mclain, Michael A. Goodrich

Faculty Publications

The objective of this paper is to describe the design and implementation of a small semi-autonomous fixed-wing unmanned air vehicle. In particular we describe the hardware and software architectures used in the design. We also describe a low weight, low cost autopilot developed at Brigham Young University and the algorithms associated with the autopilot. Novel PDA and voice interfaces to the UAV are described. In addition, we overview our approach to real-time path planning, trajectory generation, and trajectory tracking. The paper is augmented with movie files that demonstrate the functionality of the UAV and its control software.