Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

PDF

Mechanical Engineering

2016

Unmanned aircraft

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Rosflight: A Lightweight, Inexpensive Mav Research And Development Tool, Timothy Mclain, James Jackson, Gary J. Ellingson Jun 2016

Rosflight: A Lightweight, Inexpensive Mav Research And Development Tool, Timothy Mclain, James Jackson, Gary J. Ellingson

Faculty Publications

To accelerate research and development of the autonomous capabilities of micro aerial vehicles we have developed flight control framework, ROSflight, as a research tool. ROSflight makes development of autopilot code easier and more efficient by minimizing the use of embedded systems, incorporating the Robot Operating System and using off-the-shelf and open-source hardware and software. Motivation and applications for use in the research community are discussed. Analysis of loop rate and communication bandwidth are presented as well as results from flight demonstration of two multi-rotor aircraft.


Cushioned Extended-Periphery Avoidance: A Reactive Obstacle Avoidance Plugin, Timothy Mclain, James Jackson, David Wheeler Jun 2016

Cushioned Extended-Periphery Avoidance: A Reactive Obstacle Avoidance Plugin, Timothy Mclain, James Jackson, David Wheeler

Faculty Publications

While collision avoidance and flight stability are generally a micro air vehicle’s (MAVs) highest priority, many map-based path planning algorithms focus on path optimality, often assuming a static, known environment. For many MAV applications a robust navigation solution requires responding quickly to obstacles in dynamic, tight environments with non- negligible disturbances. This article first outlines the Reactive Obstacle Avoidance Plugin framework as a method for leveraging map-based algorithms while providing low-latency, high-bandwidth response to obstacles. Further, we propose and demonstrate the effectiveness of the Cushioned Extended- Periphery Avoidance (CEPA) algorithm. By representing recent laser scans in the current body-fixed polar …


Relative Navigation In Gps Degraded Environments, Timothy Mclain, David Wheeler, Paul W. Nyholm, Daniel P. Koch, Gary J. Ellingson, Benjamin J. Lewis, Randall W. Beard May 2016

Relative Navigation In Gps Degraded Environments, Timothy Mclain, David Wheeler, Paul W. Nyholm, Daniel P. Koch, Gary J. Ellingson, Benjamin J. Lewis, Randall W. Beard

Faculty Publications

For unmanned aircraft systems to become fully integrated into society, safe and reliable methods for estimation and control are required even when global measurements such as GPS are degraded or unavailable. In these situations, estimating the vehicle's global state directly leads to inaccuracy and inconsistency. The relative navigation framework avoids these issues by estimating the vehicle's state with respect to a current local coordinate frame associated with a visual odometry algorithm. A globally consistent and localized pose-graph map is produced by compounding these local estimates and opportunistically incorporating additional constraints such as GPS measurements and loop closures. This architecture increases …


Landing Zone Determination For Autonomous Rotorcraft In Surveillance Applications, Timothy Mclain, Gary J. Ellingson, Justin Mackay Jan 2016

Landing Zone Determination For Autonomous Rotorcraft In Surveillance Applications, Timothy Mclain, Gary J. Ellingson, Justin Mackay

Faculty Publications

This paper presents an approach for finding possible landing sites for a rotorcraft from an inertially referenced point-cloud model of the environment. To identify potential landing sites that are suitably flat and level, a grid-based random sample consensus algorithm separates the terrain map into discrete areas for plane-fitting analysis. Landing sites are selected that satisfy constraints on flatness and levelness while optimizing the surveillance target’s visibility. Flight test results are presented from a small multirotor aircraft flying over a scale-model cityscape. Results from real-time landing-site experiments are presented and discussed.