Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Numerical Simulation Of Convection In Triangular Cavities To Predict Solar Still Performance, Jeremy D. Lefevre, W. Jerry Bowman, Matthew R. Jones Jul 2013

Numerical Simulation Of Convection In Triangular Cavities To Predict Solar Still Performance, Jeremy D. Lefevre, W. Jerry Bowman, Matthew R. Jones

Faculty Publications

To improve modeling of solar still behavior, the convection correlations currently used need to be improved upon. Variations in operating parameters and cover geometries make it difficult to use a single correlation to describe the operation of all solar stills. In this work, three right triangles (representing covers at 15, 30, and 45 deg) were modeled, meshed, and solved to predict the convection heat transfer inside for a variety of operating conditions. For a correlation of the form Nu = C · Ran, it was found that C = 1.1, 0.60, and 0.71, and n = 0.19, 0.24, …


Performance Of Solid Oxide Iron-Air Battery Operated At 550°C, Xuan Zhao, Yunhui Gong, Xue Li, Nansheng Xu, Kevin Huang May 2013

Performance Of Solid Oxide Iron-Air Battery Operated At 550°C, Xuan Zhao, Yunhui Gong, Xue Li, Nansheng Xu, Kevin Huang

Faculty Publications

“Metal-air” batteries have garnered much attention in recent years due to their high intrinsic specific energy and use of inexhaustible and storage-free oxygen source -air- for the “metal-oxygen” reaction. In this study, we report theperformance of a new type of all solid-state “iron-air” battery operated at 550°C. The results show that CeO2 nanoparticles incorporated into the Fe-Fe3O4 redox-couple can improve the specific energy (Wh/kg) and round trip efficiency by 15% and 29%, respectively, over the baseline Fe-Fe3O4 battery. Use of supported Fe-Fe3O4 nanoparticles as the redox couple can increase the …


Design Of Experimental Methods To Test The Performance Of Pads And Helmets Under Blast Loading Conditions, Kurtis Palu May 2013

Design Of Experimental Methods To Test The Performance Of Pads And Helmets Under Blast Loading Conditions, Kurtis Palu

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

Improvised explosive devices (IEDs) have become a primary weapon in conflicts against US and allied forces. Improvements in body armor and medicine have increased the survivability of such events. These factors have caused an increase in traumatic brain injury (TBI) and mild traumatic brain injury (mTBI) induced by primary blast waves. Injury mechanisms caused from primary blast waves are not clearly understood or defined. How primary blast waves interact with materials or between narrow gaps found between helmet pads is not known. Two novel test fixtures were developed to provide a basic understanding of these two issues.

The first fixture …