Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Engineering

Evaluating Three-Dimensional Effects On The Behavior Of Compliant Bistable Micromechanisms, Brian B. Cherry, Larry L. Howell, Brian D. Jensen Sep 2008

Evaluating Three-Dimensional Effects On The Behavior Of Compliant Bistable Micromechanisms, Brian B. Cherry, Larry L. Howell, Brian D. Jensen

Faculty Publications

Fully compliant bistable micromechanisms (FCBMs) have potential use in numerous applications, including switches, relays, shutters, and low-power sensing arrays. Two-dimensional finite element models for these FCBMs have been used in device analysis and design, and provided an adequate match to preliminary experimental data. However, with more extensive experimentation over a large range of designs, some results proved to be radically different than predicted, with trends not consistent with effects such as stiction or electrostatic forces. Two different types of behavior, Behavior 1 and Behavior 2, are observed and explained, only one of which is predicted by 2-D models. This paper …


Aerobatic Maneuvering Of Miniature Air Vehicles Using Attitude Trajectories, James K. Hall, Timothy W. Mclain Aug 2008

Aerobatic Maneuvering Of Miniature Air Vehicles Using Attitude Trajectories, James K. Hall, Timothy W. Mclain

Faculty Publications

We develop aerobatic maneuvering for miniature air vehicles (MAVs) using time-parameterized attitude trajectory generation and an associated attitude tracking control law. We develop two methodologies, polynomial or trigonometric, for creating smooth functions that specify pitch and roll angle trajectories. For both approaches, the functions are constrained by the maneuver boundary conditions for aircraft position and velocity. We develop a feedback control law to regulate aircraft orientation throughout the maneuvers. The performance of our trajectory generation algorithm and our attitude tracking control law is demonstrated through simulated and actual flight tests of aerobatic maneuvers.


Adaptive Quaternion Control Of A Miniature Tailsitter Uav, Nathan B. Knoebel, Timothy W. Mclain Jun 2008

Adaptive Quaternion Control Of A Miniature Tailsitter Uav, Nathan B. Knoebel, Timothy W. Mclain

Faculty Publications

The miniature tailsitter is a unique aircraft with inherent advantages over typical unmanned aerial vehicles. With the capabilities of both hover and level flight, these small, portable systems can produce efficient maneuvers for enhanced surveillance and autonomy with little threat to surroundings and the system itself. Such vehicles create control challenges due to the two different flight regimes. These challenges are addressed with a computationally efficient adaptive quaternion control algorithm. A backstepping method for model cancellation and consistent tracking of reference model attitude dynamics is derived. This is used in conjunction with a regularized data-weighting recursive least-squares algorithm for the …


Observations Of Piezoresistivity For Polysilicon In Bending That Are Unexplained By Linear Models, Tyler L. Waterfall, Gary K. Johns, Robert K. Messenger, Brian D. Jensen, Timothy W. Mclain, Larry L. Howell Feb 2008

Observations Of Piezoresistivity For Polysilicon In Bending That Are Unexplained By Linear Models, Tyler L. Waterfall, Gary K. Johns, Robert K. Messenger, Brian D. Jensen, Timothy W. Mclain, Larry L. Howell

Faculty Publications

Compliant piezoresistive MEMS sensors exhibit great promise for improved on-chip sensing. As compliant sensors may experience complex loads, their design and implementation require a greater understanding of the piezoresistive effect of polysilicon in bending and combined loads. This paper presents experimental results showing the piezoresistive effect for these complex loads. Several n-type polysilicon test structures, fabricated in MUMPs and SUMMiT processes, were tested. Results show that, while tensile stresses cause a linear decrease in resistance, bending stresses induce a nonlinear rise in resistance, contrary to the effect predicted by linear models. In addition, tensile, compressive, and bending loads combine in …


A Model For Predicting The Piezoresistive Effect In Microflexures Experiencing Bending And Tension Loads, Gary K. Johns, Larry L. Howell, Brian D. Jensen, Timothy W. Mclain Feb 2008

A Model For Predicting The Piezoresistive Effect In Microflexures Experiencing Bending And Tension Loads, Gary K. Johns, Larry L. Howell, Brian D. Jensen, Timothy W. Mclain

Faculty Publications

This paper proposes a model for predicting the piezoresistive effect in microflexures experiencing bending stresses. Linear models have long existed for describing piezoresistivity for members in pure tension and compression. However, extensions of linear models to more complex loading conditions do not match with experimental results. A second-order model to predict piezoresistive effects in tension, compression, and more complex loading conditions is proposed. A reduced form of the general second-order model is presented for thin flexures in bending. A three-step approach is used to determine the piezoresistive coefficients for this reduced-form model. The approach is demonstrated for two sets of …


Reduced Order Modeling Of Time-Dependent Reflectance Profiles From Purely Scattering Media, R. Scott Larson, Matthew R. Jones Jan 2008

Reduced Order Modeling Of Time-Dependent Reflectance Profiles From Purely Scattering Media, R. Scott Larson, Matthew R. Jones

Faculty Publications

Due to the widespread existence and importance of foam, inverse techniques for characterizing industrial foams are of interest. An essential element in an inverse method used to characterize a foam layer is a model of the time-dependent reflectance of a laser pulse. Monte Carlo methods may be used to accurately model reflectance, but these methods are computationally expensive. Computationally efficient methods based on the diffusion approximation have been developed, but this approach is not sufficiently accurate in many cases of interest. Therefore, a computationally efficient and robust method is desirable. This paper presents a computationally efficient method for modeling the …