Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

PDF

Mechanical Engineering

University of Texas Rio Grande Valley

Cycles

Publication Year

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Estimating The Inner Ring Defect Size And Residual Service Life Of Freight Railcar Bearings Using Vibration Signatures, Jennifer Lima, Constantine Tarawneh, Jesse Aguilera, Jonas Cuanang Jul 2020

Estimating The Inner Ring Defect Size And Residual Service Life Of Freight Railcar Bearings Using Vibration Signatures, Jennifer Lima, Constantine Tarawneh, Jesse Aguilera, Jonas Cuanang

Mechanical Engineering Faculty Publications and Presentations

There are currently two primary wayside detection systems for monitoring the health of freight railcar bearings in the railroad industry: The Trackside Acoustic Detection System (TADS™) and the wayside Hot-Box Detector (HBD). TADS™ uses wayside microphones to detect and alert the train operator of high-risk defects. However, many defective bearings may never be detected by TADS™ since a high-risk defect is a spall which spans about 90% of a bearing’s raceway, and there are less than 30 systems in operation throughout the United States and Canada. HBDs sit on the side of the rail-tracks and use non-contact infrared sensors to …


Estimating The Outer Ring Defect Size And Remaining Service Life Of Freight Railcar Bearings Using Vibration Signatures, Joseph Montalvo, Constantine Tarawneh, Jennifer Lima, Jonas Cuanang, Nancy De Los Santos Jul 2019

Estimating The Outer Ring Defect Size And Remaining Service Life Of Freight Railcar Bearings Using Vibration Signatures, Joseph Montalvo, Constantine Tarawneh, Jennifer Lima, Jonas Cuanang, Nancy De Los Santos

Mechanical Engineering Faculty Publications and Presentations

The railroad industry currently utilizes two wayside detection systems to monitor the health of freight railcar bearings in service: The Trackside Acoustic Detection System (TADS™) and the wayside Hot-Box Detector (HBD). TADS™ uses wayside microphones to detect and alert the conductor of high-risk defects. Many defective bearings may never be detected by TADS™ since a high-risk defect is a spall which spans more than 90% of a bearing’s raceway, and there are less than 20 systems in operation throughout the United States and Canada. Much like the TADS™, the HBD is a device that sits on the side of the …


Defect Prognostics Models For Spall Growth In Railroad Bearing Rolling Elements, Nancy De Los Santos, Constantine Tarawneh, Robert E. Jones, Arturo A. Fuentes Jun 2018

Defect Prognostics Models For Spall Growth In Railroad Bearing Rolling Elements, Nancy De Los Santos, Constantine Tarawneh, Robert E. Jones, Arturo A. Fuentes

Mechanical Engineering Faculty Publications and Presentations

Prevention of railroad bearing failures, which may lead to catastrophic derailments, is a central safety concern. Early detection of railway component defects, specifically bearing spalls, will improve overall system reliability by allowing proactive maintenance cycles rather than costly reactive replacement of failing components. A bearing health monitoring system will provide timely detection of flaws. However, absent a well verified model for defect propagation, detection can only be used to trigger an immediate component replacement. The development of such a model requires that the spall growth process be mapped out by accumulating associated signals generated by various size spalls. The addition …


Fatigue Life Estimation Of Modified Railroad Bearing Adapters For Onboard Monitoring Applications, Alexis Trevino, Arturo A. Fuentes, Constantine Tarawneh, Joseph Montalvo Jun 2015

Fatigue Life Estimation Of Modified Railroad Bearing Adapters For Onboard Monitoring Applications, Alexis Trevino, Arturo A. Fuentes, Constantine Tarawneh, Joseph Montalvo

Mechanical Engineering Faculty Publications and Presentations

This paper presents a study of the fatigue life (i.e. number of stress cycles before failure) of Class K cast iron conventional and modified railroad bearing adapters for onboard monitoring applications under different operational conditions based on experimentally validated Finite Element Analysis (FEA) stress results. Currently, freight railcars rely heavily on wayside hot-box detectors (HBDs) at strategic intervals to record bearing cup temperatures as the train passes at specified velocities. Hence, most temperature measurements are limited to certain physical railroad locations. This limitation gave way for an optimized sensor that could potentially deliver significant insight on continuous bearing temperature conditions. …