Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 109

Full-Text Articles in Engineering

Design And Validation Of An Experimental Setup To Study Single Phase Heat Transfer Enhancement Of Femtosecond Laser Processed Metallic Surfaces, Sarah Jane Wallis Dec 2017

Design And Validation Of An Experimental Setup To Study Single Phase Heat Transfer Enhancement Of Femtosecond Laser Processed Metallic Surfaces, Sarah Jane Wallis

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

In the present work, a single phase flow heat transfer experimental loop was designed with the intention of studying the effects of femtosecond laser surface processing (FLSP) on metallic surfaces with the specific goal of enhancing heat transfer in compact heat exchangers currently in use by NASA. This experimental setup went through two major design iterations which are detailed in this thesis. The first iteration consisted of a counterflow fluid-to-fluid heat exchanger, which measured overall heat transfer coefficients and pressure drops, where the overall heat transfer coefficient is defined in terms of the total thermal resistance to heat transfer between …


Method For Single Crystal Growth Of Photovoltaic Perovskite Material And Devices, Jinsong Huang, Qingfeng Dong Nov 2017

Method For Single Crystal Growth Of Photovoltaic Perovskite Material And Devices, Jinsong Huang, Qingfeng Dong

Department of Mechanical and Materials Engineering: Faculty Publications

Systems and methods for perovskite single crystal growth include using a low temperature solution process that employs a temperature gradient in a perovskite solution in a container , also including at least one small perovskite single crystal , and a substrate in the solution upon which substrate a perovskite crystal nucleates and grows , in part due to the temperature gradient in the solution and in part due to a temperature gradient in the substrate . For example , a top portion of the substrate external to the solution may be cooled .


Oct-Based Three Dimensional Modeling Of Stent Deployment, Pengfei Dong, David Prabhu, David L. Wilson, Hiram G. Bezerra, Linxia Gu Nov 2017

Oct-Based Three Dimensional Modeling Of Stent Deployment, Pengfei Dong, David Prabhu, David L. Wilson, Hiram G. Bezerra, Linxia Gu

Department of Mechanical and Materials Engineering: Faculty Publications

Stent deployment has been widely used to treat narrowed coronary artery. Its acute outcome in terms of stent under expansion and malapposition depends on the extent and shape of calcifications. However, no clear understanding as to how to quantify or categorize the impact of calcification. We have conducted ex vivo stenting characterized by the optical coherence tomography (OCT). The goal of this work is to capture the ex vivo stent deployment and quantify the effect of calcium morphology on the stenting. A three dimensional model of calcified plaque was reconstructed from ex vivo OCT images. The crimping, balloon expansion and …


Anchoring And Stiffening Techniques For Portable Concrete Barriers, Surajkumar Bhakta Nov 2017

Anchoring And Stiffening Techniques For Portable Concrete Barriers, Surajkumar Bhakta

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

Portable concrete barrier (PCB) systems are utilized on federal and state highways in circumstances such as placing adjacent to vertical drop-offs and in construction zones. PCB systems are most commonly used in a free-standing configuration, which are known to have relatively large deflections when impacted. Large deflections are undesirable when dealing with limited space. In order to allow PCBs to be used in space restricted locations, seven PCB anchoring and stiffening techniques were tested and evaluated as per Manual for Assessing Safety Hardware (MASH) testing standards. Results will allow the New Jersey Department of Transportation to update guidance for their …


Cam-Based Pose-Independent Counterweighting For Partial Body-Weight Support In Rehabilitation, Ashish Shinde Oct 2017

Cam-Based Pose-Independent Counterweighting For Partial Body-Weight Support In Rehabilitation, Ashish Shinde

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

This thesis presents the design and testing of a body weight support system for gait training in a two-dimensional workspace. Extension of the system to a three-dimensional workspace is not within the scope of this thesis.

Gait dysfunctions are changes in normal walking patterns, often related to a disease or abnormality in different areas of the body. There are numerous body weight support (BWS) systems present in the market which are applied to rehabilitation scenarios in mobility recovery like in gait training. But most of these BWE systems are costly and generally are stationary devices. A major drawback of such …


Multiple Scattering Theory For Polycrystalline Materials With Strong Grain Anisotropy: Theoretical Fundamentals And Applications, Huijing He Oct 2017

Multiple Scattering Theory For Polycrystalline Materials With Strong Grain Anisotropy: Theoretical Fundamentals And Applications, Huijing He

Department of Mechanical and Materials Engineering: Faculty Publications

This work is a natural extension of the author’s previous work: “Multiple scattering theory for heterogeneous elastic continua with strong property fluctuation: theoretical fundamentals and applications” (arXiv:1706.09137 [physics.geo-ph]), which established the foundation for developing multiple scattering model for heterogeneous elastic continua with either weak or strong fluctuations in mass density and elastic stiffness. Polycrystalline material is another type of heterogeneous materials that widely exists in nature and extensively used in industry. In this work, the corresponding multiple scattering theory for polycrystalline materials with randomly oriented anisotropic crystallites is developed. To validate the theory, the theoretical results for a series of …


Floating-Gate Transistor Photodetector, Jinsong Huang, Yongbo Yuan Oct 2017

Floating-Gate Transistor Photodetector, Jinsong Huang, Yongbo Yuan

Department of Mechanical and Materials Engineering: Faculty Publications

A field effect transistor photodetector that can operate in room temperature includes a source electrode , a drain electrode , a channel to allow an electric current to flow between the drain and source electrodes , and a gate electrode to receive a bias voltage for controlling the current in the channel . The photodetector includes a light - absorbing mate rial that absorbs light and traps electric charges . The light absorbing material is configured to generate one or more charges upon absorbing light having a wavelength within a specified range and to hold the one or more charges …


Software For Extracting Deformation Gradient And Stress From Md Simulations: Simulations Using The Charmm Force Field, Mehrdad Negahban, Lili Zhang, Zesheng Zhang, John Jasa, Antoine Jérusalem Aug 2017

Software For Extracting Deformation Gradient And Stress From Md Simulations: Simulations Using The Charmm Force Field, Mehrdad Negahban, Lili Zhang, Zesheng Zhang, John Jasa, Antoine Jérusalem

Department of Mechanical and Materials Engineering: Faculty Publications

Software was developed, and is provided under a general use license, to calculate continuum level deformation gradient and stress for any group of atoms in an MD simulation that uses the Charmm force fields. This software can also calculate the interaction stress applied by one group of atoms on any other group. To obtain deformation gradient and stress, the user needs to provide the selected group(s) of atoms in an atom group identification file, and provide the associated LAMMPS format files and force field parameter file. An example is included to demonstrate the use of the software.


Energy Absorbing Guardrail System, John R. Rohde, John D. Reid, King K. Mak, Dean L. Sicking Aug 2017

Energy Absorbing Guardrail System, John R. Rohde, John D. Reid, King K. Mak, Dean L. Sicking

Department of Mechanical and Materials Engineering: Faculty Publications

A highway crash attenuation system having W - beam rail elements attached to a plurality of vertical posts . An impact terminal with a feeder chute guides one or more of the W - beam rail elements through the impact terminal . The feeder chute has an impact shield extending along a traffic facing side of the chute from an upstream - most end to a downstream - most end of the chute closing the traffic - facing side of the chute . The system also has an anchor cable release mechanism for releasing the cable downstream of the first …


Shape-Adaptive Mechanism For Robotic Grasping, Carl A. Nelson Aug 2017

Shape-Adaptive Mechanism For Robotic Grasping, Carl A. Nelson

Department of Mechanical and Materials Engineering: Faculty Publications

A grapser can include a first pantograph cell and a second pantograph cell coupled with the first pantogrpah cell. The first and second pantograph cells can be coupled together at a first pivot and a second pivot. The grasper can also include a finger extendable in a direction extending between the first pivot and the second pivot. The grasper can include a support base, where one or more links of the first pantograph cell can be slidably coupled with the support base for extending the grasper. In some embodiment, the grasper can be configured to extend along a curved path. …


Cyber-Physical System Characterization And Co-Regulation Of A Quadrotor Uas, Seth E. Doebbeling Aug 2017

Cyber-Physical System Characterization And Co-Regulation Of A Quadrotor Uas, Seth E. Doebbeling

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

An Unmanned Aircraft System (UAS) is a Cyber-Physical System (CPS) in which a host of real-time computational tasks contending for shared resources must be cooperatively managed to obtain mission objectives. Traditionally, control of the UAS is designed assuming a fixed, high sampling rate in order to maintain reliable performance and margins of stability. But emerging methods challenge this design by dynamically allocating resources to computational tasks, thereby affecting control and mission performance. To apply these emerging strategies, a characterization and understanding of the effects of timing on control and trajectory following performance is required. Going beyond traditional control evaluation techniques, …


Design And Experimentation Of Cable-Driven Platform Stabilization And Control Systems, Matthew Newman Aug 2017

Design And Experimentation Of Cable-Driven Platform Stabilization And Control Systems, Matthew Newman

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

Agricultural researchers are constantly attempting to generate crops superior to those currently in use by the world. Whether this means creating crops with greater yield, crops that are more resilient to disease, or crops that can tolerate harsh environments with fewer failures, test plots of these experimental crops must be studied in real-world environments with minimal invasion to determine how they will perform in full-scale agricultural settings. To monitor these crops without interfering on their natural growth, a noninvasive sensor system has been implemented. This system, instituted by the College of Agricultural Sciences and Natural Resources at the University of …


Design And Experimentation Of Cable-Driven Platform Stabilization And Control Systems, Matthew Newman Aug 2017

Design And Experimentation Of Cable-Driven Platform Stabilization And Control Systems, Matthew Newman

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

Agricultural researchers are constantly attempting to generate crops superior to those currently in use by the world. Whether this means creating crops with greater yield, crops that are more resilient to disease, or crops that can tolerate harsh environments with fewer failures, test plots of these experimental crops must be studied in real-world environments with minimal invasion to determine how they will perform in full-scale agricultural settings. To monitor these crops without interfering on their natural growth, a noninvasive sensor system has been implemented. This system, instituted by the College of Agricultural Sciences and Natural Resources at the University of …


Development Of The End-Effector Of A Cable-Driven Parallel Manipulator For Automated Crop Sensing, Iman Salafian Aug 2017

Development Of The End-Effector Of A Cable-Driven Parallel Manipulator For Automated Crop Sensing, Iman Salafian

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

A four cable-driven parallel manipulator (4CDPM), consisting of sophisticated spectrometers and imagers, is under development for use in acquiring phenotypic and environmental data over an acre-sized maize field. This thesis presents the design, controls, and testing of two sub-systems in a 4CDPM: a Center of Mass Balance System (CMBS) and a Drop-Down System (DDS).

One of the factors that influences stability is the center of mass (COM) position of the end effector. An offset in COM can cause a pendulum effect or an undesired tilt angle. A center of mass balancing system is presented in this thesis to minimize the …


Meniscus-Assisted Solution Printing Of Largegrained Perovskite Films For High-Efficiency Solar Cells, Ming He, Bo Li, Xun Cui, Beibei Jiang, Yanjie He, Yihuang Chen, Daniel O'Neil, Paul Szymanski, Mostafa A. El-Sayed, Jinsong Huang, Zhiqun Lin Jul 2017

Meniscus-Assisted Solution Printing Of Largegrained Perovskite Films For High-Efficiency Solar Cells, Ming He, Bo Li, Xun Cui, Beibei Jiang, Yanjie He, Yihuang Chen, Daniel O'Neil, Paul Szymanski, Mostafa A. El-Sayed, Jinsong Huang, Zhiqun Lin

Department of Mechanical and Materials Engineering: Faculty Publications

Control over morphology and crystallinity of metal halide perovskite films is of key importance to enable high-performance optoelectronics. However, this remains particularly challenging for solution-printed devices due to the complex crystallization kinetics of semiconductor materials within dynamic flow of inks. Here we report a simple yet effective meniscus-assisted solution printing (MASP) strategy to yield large-grained dense perovskite film with good crystallization and preferred orientation. Intriguingly, the outward convective flow triggered by fast solvent evaporation at the edge of the meniscus ink imparts the transport of perovskite solutes, thus facilitating the growth of micrometre-scale perovskite grains. The growth kinetics of perovskite …


Application Of Dfx Methods To A Gait Rehabilitation System, Devin K. Elley Jul 2017

Application Of Dfx Methods To A Gait Rehabilitation System, Devin K. Elley

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

Walking is an important physical activity that offers major health benefits for those who are able to perform the task. However, there are millions of people worldwide who have lost the ability to walk from physical accidents or a disease which limits the ability for them to use their legs. Often these patients use gait therapy to learn how to walk again. During this gait therapy, a physical therapist may use gait rehabilitation machines to assist the patient in learning to walk in a correct gait path.

Two gait rehabilitation machine iterations were designed to produce an effective rehabilitation machine …


Dissipative Elastic Metamaterial With A Lowfrequency Passband, Yongquan Liu, Jianlin Yi, Zheng Li, Xianyue Su, Wenlong Li, Mehrdad Negahban Jun 2017

Dissipative Elastic Metamaterial With A Lowfrequency Passband, Yongquan Liu, Jianlin Yi, Zheng Li, Xianyue Su, Wenlong Li, Mehrdad Negahban

Department of Mechanical and Materials Engineering: Faculty Publications

We design and experimentally demonstrate a dissipative elastic metamaterial structure that functions as a bandpass filter with a low-frequency passband. The mechanism of dissipation in this structure is well described by a mass-spring-damper model that reveals that the imaginary part of the wavenumber is non-zero, even in the passband of dissipative metamaterials. This indicates that transmittance in this range can be low. A prototype for this viscoelastic metamaterial model is fabricated by 3D printing techniques using soft and hard acrylics as constituent materials. The transmittance of the printed metamaterial is measured and shows good agreement with theoretical predictions, demonstrating its …


Multiple Scattering Theory For Heterogeneous Elastic Continua With Strong Property Fluctuation: Theoretical Fundamentals And Applications, Huijing He Jun 2017

Multiple Scattering Theory For Heterogeneous Elastic Continua With Strong Property Fluctuation: Theoretical Fundamentals And Applications, Huijing He

Department of Mechanical and Materials Engineering: Faculty Publications

Scattering of elastic waves in heterogeneous media has become one of the most important problems in the field of wave propagation due to its broad applications in seismology, natural resource exploration, ultrasonic nondestructive evaluation and biomedical ultrasound. Nevertheless, it is one of the most challenging problems because of the complicated medium inhomogeneity and the complexity of the elastodynamic equations. A widely accepted model for the propagation and scattering of elastic waves, which properly incorporates the multiple scattering phenomenon and the statistical information of the inhomogeneities is still missing. In this work, the author developed a multiple scattering model for heterogeneous …


A Strategy To Optimize Recovery In Orthopedic Sports Injuries, Michael P. Sealy, Ziye Liu, Chao Li, Yuebin Guo, Ben White, Mark Barkey, Brian Jordon J, Luke N. Brewer, Dale Feldman Jun 2017

A Strategy To Optimize Recovery In Orthopedic Sports Injuries, Michael P. Sealy, Ziye Liu, Chao Li, Yuebin Guo, Ben White, Mark Barkey, Brian Jordon J, Luke N. Brewer, Dale Feldman

Department of Mechanical and Materials Engineering: Faculty Publications

An important goal for treatment of sports injuries is to have as short a recovery time as possible. The critical problem with current orthopedic implants is that they are designed to be permanent and have a high complication rate (15%) that often requires removal and replacement with a second surgery; and subsequently a second rehabilitation cycle. This study was designed to test the feasibility of having a device that could provide the needed mechanical properties, while promoting healing, for a specified amount of time and then degrade away, to shorten the recovery time. The specific strategy was to create a …


On The Wetting States Of Low Melting Point Metal Galinstan And Wetting Characteristics Of 3-Dimensional Nanostructured Fractal Surfaces, Ethan Allan Davis May 2017

On The Wetting States Of Low Melting Point Metal Galinstan And Wetting Characteristics Of 3-Dimensional Nanostructured Fractal Surfaces, Ethan Allan Davis

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

Exergy, or the availability of energy for useful work, is a critical issue that must be addressed to accommodate growing energy demands of society. Increasing population and steady advancement of technology necessitates novel approaches to the management, conversion, and storage of energy. Per the Lawrence Livermore National Laboratory, approximately 60 percent of the energy used by the United States in 2015 was rejected as waste [1]; a large quantity of which can be assumed to be in the form of heat. Therefore, novel thermal management methods for waste heat are critical to increasing energy efficiency and sustainability in the future. …


Safer Sweep Auger Operation Using Robotics, Nathan A. Wulf May 2017

Safer Sweep Auger Operation Using Robotics, Nathan A. Wulf

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

This thesis presents a remotely controlled robotic solution for those who must sometimes enter agriculturally confined spaces in attempts to assist with grain bin cleanout, particularly by manipulating the sweep auger. In 2015 alone, there were at least 47 documented incidents that occurred in agriculturally confined spaces, of which more than half were fatal. While there have been several advancements in the quality and effectiveness of sweep augers, there have been very few that offer the safety and adaptability of the robotic solution proposed. This robotic solution is a four-wheeled, skid-steering style robot with camera and lighting attachments that allow …


Peridynamic Models For Fatigue And Fracture In Isotropic And In Polycrystalline Materials, Guanfeng Zhang May 2017

Peridynamic Models For Fatigue And Fracture In Isotropic And In Polycrystalline Materials, Guanfeng Zhang

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

To improve design and reliability, extensive efforts has been devoted to understanding damage and failure of materials and structures using numerical simulation, as a complement of theory and experiment. In this thesis, peridynamics is adopted to study fatigue and dynamic failure problems.

Fatigue is a major failure mode in engineering structures. Predicting fracture/failure under cyclic loading is a challenging problem. Classical model cannot directly be applied to problems with discontinuities. A peridynamic model is adopted in this work because of important advantages of peridynamics in allowing autonomous crack initiation and propagation. A recently proposed peridynamic fatigue crack model is considered …


Applications Of Femtosecond Laser Processed Metallic Surfaces: Leidenfrost Point And Thermal Stability Of Rare Earth Oxide Coatings, Anton Charles Hassebrook May 2017

Applications Of Femtosecond Laser Processed Metallic Surfaces: Leidenfrost Point And Thermal Stability Of Rare Earth Oxide Coatings, Anton Charles Hassebrook

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

In this thesis, micro/nano structured surfaces were created through the use of Femtosecond Laser Surface Processing (FLSP). In the first part of the thesis, an experimental investigation of the effects of droplet diameters and fluid properties on the Leidenfrost temperature of polished and nano/microstructured surfaces has been carried out. Leidenfrost experiments were conducted on a stainless steel 304 polished surface and a stainless steel surface which was processed by a femtosecond laser to form Above Surface Growth (ASG) nano/microstructures. Surface preparation resulted in a root mean square roughness (Rrms) of 4.8 µm and 0.04 µm on the laser …


Development Of Peritoneal Microbubble Oxygenation As An Extrapulmonary Treatment For Hypoxia, Nathan Legband May 2017

Development Of Peritoneal Microbubble Oxygenation As An Extrapulmonary Treatment For Hypoxia, Nathan Legband

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

Patients affected by a respiratory disease or injury experience a substantially impaired respiratory system and as a consequence are unable to obtain a sufficient amount of oxygen. Hypoxia can quickly result in developing permanent tissue damage or death. Currently, the medical methods of treating hypoxia are mechanical ventilation or extracorporeal membrane oxygenation. However, these treatments are ineffective in certain cases and possess significant additional risks including barotrauma, infection, hemorrhage, and thrombosis.

The extrapulmonary method of peritoneal oxygenation has been investigated by other research groups as a potential alternative to providing supplemental oxygen in hypoxic animals. In peritoneal oxygenation, the peritoneum, …


Near-Field Thermal Radiation For Solar Thermophotovoltaics And High Temperature Thermal Logic And Memory Applications, Mahmoud Elzouka May 2017

Near-Field Thermal Radiation For Solar Thermophotovoltaics And High Temperature Thermal Logic And Memory Applications, Mahmoud Elzouka

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

This dissertation investigates Near-Field Thermal Radiation (NFTR) applied to MEMS-based concentrated solar thermophotovoltaics (STPV) energy conversion and thermal memory and logics. NFTR is the exchange of thermal radiation energy at nano/microscale; when separation between the hot and cold objects is less than dominant radiation wavelength (~1 μm). NFTR is particularly of interest to the above applications due to its high rate of energy transfer, exceeding the blackbody limit by orders of magnitude, and its strong dependence on separation gap size, surface nano/microstructure and material properties.

Concentrated STPV system converts solar radiation to electricity using heat as an intermediary through a …


Design And Validation Of An In Vivo Long-Term Attachment Capsule Robot, Wanchuan Xie May 2017

Design And Validation Of An In Vivo Long-Term Attachment Capsule Robot, Wanchuan Xie

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

The invention of capsule endoscopy (CE) made the non-invasive monitoring of the entire small bowel possible and became the primary means for diagnosing small bowel pathology. In the last decade, capsule robots have been transformed from diagnostic devices into a widely studied biomedical platform with the potential for active locomotion, drug delivery and therapeutic capabilities. To perform accurate on-site drug release and therapy, it is necessary for a capsule robot to be able to attach to the intestinal tissue and maintain its position long-term. Design challenges derive from the task of long-term mucosal adhesion which requires firm, quick-response attachment without …


Fabrication And Study Of The Structure And Magnetism Of Rare-Earth Free Nanoclusters, Bhaskar Das Apr 2017

Fabrication And Study Of The Structure And Magnetism Of Rare-Earth Free Nanoclusters, Bhaskar Das

Department of Physics and Astronomy: Dissertations, Theses, and Student Research

No abstract provided.


Primary Blast Waves Induced Brain Dynamics Influenced By Head Orientations, Yi Hua, Yugang Wang, Linxia Gu Apr 2017

Primary Blast Waves Induced Brain Dynamics Influenced By Head Orientations, Yi Hua, Yugang Wang, Linxia Gu

Department of Mechanical and Materials Engineering: Faculty Publications

There is controversy regarding the directional dependence of head responses subjected to blast loading. The goal of this work is to characterize the role of head orientation in the mechanics of blast wave-head interactions as well as the load transmitting to the brain. A three-dimensional human head model with anatomical details was reconstructed from computed tomography images. Three different head orientations with respect to the oncoming blast wave, i.e., front-on with head facing blast, back-on with head facing away from blast, and side-on with right side exposed to blast, were considered. The reflected pressure at the blast wave-head interface positively …


Superpositioning High Power Lasers For Mid-Air Image Formations, Auston Viotto Apr 2017

Superpositioning High Power Lasers For Mid-Air Image Formations, Auston Viotto

UCARE Research Products

This research evaluates different methods to create voxels, 3-dimensional pixels, in air without the need for special glasses or reflections off of surfaces. Research on the advantages of superimposing or the culmination, focusing, of laser light will be conducted. The point of superpositioning/culmination will be evaluated by the brightness of the voxel due to the Rayleigh Scatter Effect. The voxel’s brightness is dependent on the laser output strength and inversely proportional to its wavelength. Once a superimposed/culminated voxel has been created in the lab the next step will be to manipulate the location of the voxel through 3-dimensional space. This …


Oxidation Of Ti2Alc In High Temperature Steam Environment, Ziyad M. Smoqi Apr 2017

Oxidation Of Ti2Alc In High Temperature Steam Environment, Ziyad M. Smoqi

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

High temperature oxidation of fuel cladding materials, during the loss of coolant accident (LOCA), is of utmost importance for next-generation nuclear energy systems. Ti2AlC is a promising candidate material for nuclear applications due to its outstanding properties such as thermal stability at high temperatures, oxidation resistance in air, thermal shock resistance, low neutron absorption cross-section, and the resistance to irradiation-induced amorphization. In this research, high temperature steam oxidation experiments were conducted to evaluate the oxidation resistance of Ti2AlC in LOCA conditions. After oxidation in 100% steam at 600 and 800˚C, the oxidation kinetics followed a parabolic …