Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

PDF

Chemical Engineering

Chemical and Materials Engineering Faculty Publications

Layer-by-layer assembly

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Multienzyme Immobilized Polymeric Membrane Reactor For The Transformation Of A Lignin Model Compound, Rupam Sarma, Md. Saiful Islam, Mark P. Running, Dibakar Bhattacharyya Apr 2018

Multienzyme Immobilized Polymeric Membrane Reactor For The Transformation Of A Lignin Model Compound, Rupam Sarma, Md. Saiful Islam, Mark P. Running, Dibakar Bhattacharyya

Chemical and Materials Engineering Faculty Publications

We have developed an integrated, multienzyme functionalized membrane reactor for bioconversion of a lignin model compound involving enzymatic catalysis. The membrane bioreactors were fabricated through the layer-by-layer assembly approach to immobilize three different enzymes (glucose oxidase, peroxidase and laccase) into pH-responsive membranes. This novel membrane reactor couples the in situ generation of hydrogen peroxide (by glucose oxidase) to oxidative conversion of a lignin model compound, guaiacylglycerol-β-guaiacyl ether (GGE). Preliminary investigation of the efficacy of these functional membranes towards GGE degradation is demonstrated under convective flow mode. Over 90% of the initial feed could be degraded with the multienzyme immobilized membranes …


Layer-By-Layer Assembled Membranes With Immobilized Porins, Sebastián Hernández, Cassandra Porter, Xinyi Zhang, Yinan Wei, Dibakar Bhattacharyya Dec 2017

Layer-By-Layer Assembled Membranes With Immobilized Porins, Sebastián Hernández, Cassandra Porter, Xinyi Zhang, Yinan Wei, Dibakar Bhattacharyya

Chemical and Materials Engineering Faculty Publications

New and advanced opportunities are arising for the synthesis and functionalization of membranes with selective separation, reactivity, and stimuli-responsive behavior. One such advancement is the integration of bio-based channels in membrane technologies. By a layer-by-layer (LbL) assembly of polyelectrolytes, outer membrane protein F trimers (OmpF) or “porins” from Escherichia coli with central pores ∼2 nm in diameter at their opening and ∼0.7 × 1.1 nm at their constricted region are immobilized within the pores of poly(vinylidene fluoride) microfiltration membranes, in contrast to traditional ruptured lipid bilayer or vesicle processes. These OmpF-membranes demonstrate selective rejection of non-charged organics over ionic solutes, …