Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 15 of 15

Full-Text Articles in Engineering

Formation Of Organized Nanostructures From Unstable Bilayers Of Thin Metallic Liquids, Mikhail Khenner, Sagar Yadavali, Ramki Kalyanaraman Dec 2011

Formation Of Organized Nanostructures From Unstable Bilayers Of Thin Metallic Liquids, Mikhail Khenner, Sagar Yadavali, Ramki Kalyanaraman

Mathematics Faculty Publications

Dewetting of pulsed-laser irradiated, thin (< 20 nm), optically reflective metallic bilayers on an optically transparent substrate with a reflective support layer is studied within the lubrication equations model. A steady-state bilayer film thickness (h) dependent temperature profile is derived based on the mean substrate temperature estimated from the elaborate thermal model of transient heating and melting/freezing. Large thermocapillary forces are observed along the plane of the liquid-liquid and liquid-gas interfaces due to this h-dependent temperature, which, in turn, is strongly influenced by the h-dependent laser light reflection and absorption. Consequently the dewetting is a result of the competition between thermocapillary and intermolecular forces. A linear analysis of the dewetting length scales established that the non-isothermal calculations better predict the experimental results as compared to the isothermal case within the bounding Hamaker coefficients. Subsequently, a computational non-linear dynamics study of the dewetting pathway was performed for Ag/Co and Co/Ag bilayer systems to predict the morphology evolution. We found that the systems evolve towards formation of different morphologies, including core-shell, embedded, or stacked nanostructure morphologies.


Aerosol-Assisted Synthesis Of Monodisperse Single-Crystalline Α-Cristobalite Nanospheres, Xingmao Jiang, Lihong Bao, Yung-Sung Cheng, Darren R. Dunphy, Xiaodong Li, C. Jeffrey Brinker Dec 2011

Aerosol-Assisted Synthesis Of Monodisperse Single-Crystalline Α-Cristobalite Nanospheres, Xingmao Jiang, Lihong Bao, Yung-Sung Cheng, Darren R. Dunphy, Xiaodong Li, C. Jeffrey Brinker

Faculty Publications

Monodisperse single-crystalline α-cristobalite nanospheres have been synthesized by hydrocarbon-pyrolysis-induced carbon deposition on amorphous silica aerosol nanoparticles, devitrification of the coated silica at high temperature, and subsequent carbon removal by oxidation. The nanosphere size can be well controlled by tuning the size of the colloidal silica precursor. Uniform, high-purity nanocrystalline α-cristobalite is important for catalysis, nanocomposites, advanced polishing, and understanding silica nanotoxicology.


History Of The Biological Systems Engineering Program In Nebraska, University Of Nebraska-Lincoln, William E. Splinter Oct 2011

History Of The Biological Systems Engineering Program In Nebraska, University Of Nebraska-Lincoln, William E. Splinter

Tractor Testing Development and Research Documents

The Farm Machinery/Agricultural Engineering/Biological Systems Engineering program current and former faculty members at the University of Nebraska, as demonstrated here, has made a statewide, national, and worldwide impact on the efficient production of food. The quality of this recognition is evidenced best by peer professionals through recognized ASABE awards received by Nebraska alumni or professors. Since its inception in 1909 and until 2010, there have been 10 national presidents, 19 gold medal recipients and 33 named national award recipients. Currently there are 31 ASABE Fellows and two members of the National Academy of Engineering. This national recognition comes as a …


Synthesis, Structural, Optical And Mechanical Characterization Of Srb2O4 Nanorods, Rui Li, Lihong Bao, Xiaodong Li Oct 2011

Synthesis, Structural, Optical And Mechanical Characterization Of Srb2O4 Nanorods, Rui Li, Lihong Bao, Xiaodong Li

Faculty Publications

Single crystalline strontium borate (SrB2O4) nanorods were synthesized for the first time via a facile sol–gel route at low temperature. The SrB2O4 nanorods have a good crystalline nature with the growth direction along the [511] orientation and they are transparent from the ultraviolet to the visible regimes. Nanoscale three-point bending tests were performed directly on individual nanorods to probe their mechanical properties using an atomic force microscope. The elastic modulus of SrB2O4 nanorods was measured to be 158.2 ± 2.8 GPa, exhibiting a significant increase compared with other borate nanostructures …


In Situ Synthesis Of Ultrafine Ss-Mno2/Polypyrrole Nanorod Composites For High-Performance Supercapacitors, Jianfeng Zang, Xiaodong Li Aug 2011

In Situ Synthesis Of Ultrafine Ss-Mno2/Polypyrrole Nanorod Composites For High-Performance Supercapacitors, Jianfeng Zang, Xiaodong Li

Faculty Publications

We report a remarkable observation that is at odds with the established notion that β-MnO2 was regarded as an undesirable candidate for supercapacitor applications. The specific capacitance of β-MnO2 can reach as high as 294 F g−1, which is comparable to the best crystallographic structure, like α-MnO2. The key is to substantially decrease the size of β-MnO2 powders to ultra small regime. We demonstrate a facile, simple, and effective approach to synthesizing ultrafine (<10 nm in diameter) β-MnO2/polypyrrole nanorod composite powders for high-performance supercapacitor electrodes. Our observation may encourage a revisit of the other good …


Characteristics Of The Hydrogen Electrode In High Temperature Steam Electrolysis Process, Chao Jin, Chenghao Yang, Fanglin Chen Aug 2011

Characteristics Of The Hydrogen Electrode In High Temperature Steam Electrolysis Process, Chao Jin, Chenghao Yang, Fanglin Chen

Faculty Publications

YSZ-electrolyte supported solid oxide electrolyzer cells (SOECs) using LSM-YSZ oxygen electrode but with three types of hydrogen electrode, Ni–SDC, Ni–YSZ and LSCM–YSZ have been fabricated and characterized under different steam contents in the feeding gas at 850°C. Electrochemical impedance spectra results show that cell resistances increase with the increase in steam concentrations under both open circuit voltage and electrolysis conditions, suggesting that electrolysis reaction becomes more difficult in high steam content. Pt reference electrode was applied to evaluate the contributions of the hydrogen electrode and oxygen electrode in the electrolysis process. Electrochemical impedance spectra and over potential of both electrodes …


A Generic Bamboo-Based Carbothermal Method For Preparing Carbide (Sic, B4C, Tic, Tac, Nbc, TiXNb1-XC, And TaX Nb1-XC) Nanowires, Xinyong Tao, Yiping Li, Jun Du, Yang Xia, Yingchao Yang, Hui Huang, Yongping Gan, Wenkui Zhang, Xiaodong Li Jun 2011

A Generic Bamboo-Based Carbothermal Method For Preparing Carbide (Sic, B4C, Tic, Tac, Nbc, TiXNb1-XC, And TaX Nb1-XC) Nanowires, Xinyong Tao, Yiping Li, Jun Du, Yang Xia, Yingchao Yang, Hui Huang, Yongping Gan, Wenkui Zhang, Xiaodong Li

Faculty Publications

Finding a general procedure to produce a whole class of materials in a similar way is a desired goal of materials chemistry. In this work, we report a new bamboo-based carbothermal method to prepare nanowires of covalent carbides (SiC and B4C) and interstitial carbides (TiC, TaC, NbC, TixNb1−xC, and TaxNb1−xC). The use of natural nanoporous bamboo as both the renewable carbon source and the template for the formation of catalyst particles greatly simplifies the synthesis process. Based on the structural, morphological and elemental analysis, volatileoxides or halides assisted …


Airplane Landing Flare-The Last 5 Seconds, Nihad E. Daidzic May 2011

Airplane Landing Flare-The Last 5 Seconds, Nihad E. Daidzic

Aviation Department Publications

No abstract provided.


Mechatronics Application To Solar Tracking, Danny L. Rodriguez Jr Apr 2011

Mechatronics Application To Solar Tracking, Danny L. Rodriguez Jr

Purdue Polytechnic Directed Projects

The purpose of this was to design and implement a two-axis solar tracking system utilizing the National Instruments C-Rio real time controller. In order to accomplish this a prototype was modeled in CAD. This prototype used two 12 V DC motors to change a solar panel's rotation and tilt based on feedback data from three cadmium sulfide photoresistors. This configuration was chosen for its ability to create both a left-right rotational and an up/down tilt differential. In Addition this approach uses National Instruments Labview to control a solar tracking system. Using Labview add uniqueness to this project by adding a …


Some Considerations For Regional Airline Operations On Contaminated Runways., Nihad E. Daidzic Apr 2011

Some Considerations For Regional Airline Operations On Contaminated Runways., Nihad E. Daidzic

Aviation Department Publications

No abstract provided.


Newsletter 44 Issue 1 - Spring 2011 - Nuts And Bolts Mar 2011

Newsletter 44 Issue 1 - Spring 2011 - Nuts And Bolts

Friends of the Larsen Tractor Museum

No abstract provided.


Stability Of A Strongly Anisotropic Thin Epitaxial Film In A Wetting Interaction With Elastic Substrate, Mikhail Khenner, Wondimu T. Tekalign, Margo S. Levine Jan 2011

Stability Of A Strongly Anisotropic Thin Epitaxial Film In A Wetting Interaction With Elastic Substrate, Mikhail Khenner, Wondimu T. Tekalign, Margo S. Levine

Mathematics Faculty Publications

The linear dispersion relation for longwave surface perturbations, as derived by Levine et al. Phys. Rev. B 75, 205312 (2007) is extended to include a smooth surface energy anisotropy function with a variable anisotropy strength (from weak to strong, such that sharp corners and slightly curved facets occur on the corresponding Wulff shape). Through detailed parametric studies it is shown that a combination of a wetting interaction and strong anisotropy, and even a wetting interaction alone results in complicated linear stability characteristics of strained and unstrained films.


Stability Of A Strongly Anisotropic Thin Epitaxial Film In A Wetting Interaction With Elastic Substrate, Mikhail Khenner, Wondimu Tekalign, Margo Levine Jan 2011

Stability Of A Strongly Anisotropic Thin Epitaxial Film In A Wetting Interaction With Elastic Substrate, Mikhail Khenner, Wondimu Tekalign, Margo Levine

Mathematics Faculty Publications

The linear dispersion relation for longwave surface perturbations, as derived by Levine et al. Phys. Rev. B 75, 205312 (2007) is extended to include a smooth surface energy anisotropy function with a variable anisotropy strength (from weak to strong, such that sharp corners and slightly curved facets occur on the corresponding Wulff shape). Through detailed parametric studies it is shown that a combination of a wetting interaction and strong anisotropy, and even a wetting interaction alone results in complicated linear stability characteristics of strained and unstrained films.


Modeling Diverse Physics Of Nanoparticle Self-Assembly In Pulsed Laser-Irradiated Metallic Films, Mikhail Khenner Jan 2011

Modeling Diverse Physics Of Nanoparticle Self-Assembly In Pulsed Laser-Irradiated Metallic Films, Mikhail Khenner

Mathematics Faculty Publications

Presents physics behind dewetting of thin liquid films and mathematical/computational modeling tools (Educational/Research presentation for senior physics majors).


A Shock Tube Technique For Blast Wave Simulation And Studies Of Flow Structure Interactions In Shock Tube Blast Experiments, Nicholas N. Kleinschmit Jan 2011

A Shock Tube Technique For Blast Wave Simulation And Studies Of Flow Structure Interactions In Shock Tube Blast Experiments, Nicholas N. Kleinschmit

Department of Engineering Mechanics: Dissertations, Theses, and Student Research

Improvised explosive devices (IED’s) are widely used against US and allied forces fighting in Iraq and Afghanistan. Exposure to IED blast may cause blast-induced traumatic brain injury (bTBI). The injury mechanisms are however not well understood. A critical need in bTBI-related research is the ability to replicate the loading conditions of IED blast waves in a laboratory environment. In this work, experimental studies have been carried out to explore the use of the shock tube technique for generating air shock waves that mimic the temporal and spatial characteristics of free-field blast waves and to investigate the blast wave-test sample interactions …