Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Engineering

Modeling Hydration Kinetics Of Sustainable Cementitious Binders Using An Advanced Nucleation And Growth Approach, Taihao Han, Jie Huang, Gaurav Sant, Narayanan Neithalath, Ashutosh Goel, Aditya Kumar Nov 2023

Modeling Hydration Kinetics Of Sustainable Cementitious Binders Using An Advanced Nucleation And Growth Approach, Taihao Han, Jie Huang, Gaurav Sant, Narayanan Neithalath, Ashutosh Goel, Aditya Kumar

Electrical and Computer Engineering Faculty Research & Creative Works

Supplementary cementitious materials (SCMs) are utilized to partially substitute Portland cement (PC) in binders, reducing carbon-footprint and maintaining excellent performance. Nonetheless, predicting the hydration kinetics of [PC + SCM] binders is challenging for current analytical models due to the extensive diversity of chemical compositions and molecular structures present in both SCMs and PC. This study develops an advanced phase boundary nucleation and growth (pBNG) model to yield a priori predictions of hydration kinetics—i.e., time-resolved exothermic heat release profiles—of [PC + SCM] binders. The advanced pBNG model integrates artificial intelligence as an add-on, enabling it to accurately simulate hydration kinetics for …


Boosting Snr Of Cascaded Fbgs In A Sapphire Fiber Through A Rapid Heat Treatment, Farhan Mumtaz, Hanok Tekle, Bohong Zhang, Jeffrey D. Smith, Ronald J. O'Malley, Rex E. Gerald, Jie Huang Nov 2023

Boosting Snr Of Cascaded Fbgs In A Sapphire Fiber Through A Rapid Heat Treatment, Farhan Mumtaz, Hanok Tekle, Bohong Zhang, Jeffrey D. Smith, Ronald J. O'Malley, Rex E. Gerald, Jie Huang

Electrical and Computer Engineering Faculty Research & Creative Works

This Letter reports the performance of femtosecond (fs) laser-written distributed fiber Bragg gratings (FBGs) under high-temperature conditions up to 1600°C and explores the impact of rapid heat treatment on signal-to-noise ratio (SNR) enhancement. FBGs are essential for reliable optical sensing in extreme temperature environments. Comprehensive tests demonstrate the remarkable performance and resilience of FBGs at temperatures up to 1600°C, confirming their suitability for deployment in such conditions. The study also reveals significant fringe visibility improvements of up to ∼10 dB on a 1-m-long sapphire optical fiber through rapid heat treatment, representing a first-time achievement to the best of our knowledge. …


Large-Scale Cascading Of First-Order Fbg Array In A Highly Multimode Coreless Fiber Using Femtosecond Laser For Distributed Thermal Sensing, Farhan Mumtaz, Bohong Zhang, Ronald J. O'Malley, Jie Huang Aug 2023

Large-Scale Cascading Of First-Order Fbg Array In A Highly Multimode Coreless Fiber Using Femtosecond Laser For Distributed Thermal Sensing, Farhan Mumtaz, Bohong Zhang, Ronald J. O'Malley, Jie Huang

Electrical and Computer Engineering Faculty Research & Creative Works

This research focuses on the performance analysis and characterization of a fiber Bragg gratings (FBGs) array, consisting of 10 first order FBGs inscribed by a femtosecond (FS) laser in a highly multimode coreless fiber. The study evaluates the FBG array's ability to function as a distributed thermal sensing (DTS) platform, with the coreless fiber chosen as the sensing element due to its immunity to dopant migration at high temperatures. The design of a large cascaded first-order FBG array effectively eliminates unwanted harmonic peaks across a wide spectrum range. In contrast, higher-order FBGs introduce limitations due to the overlapping of Bragg …


Nonmonotonic Effect Of Chemical Heterogeneity On Interfacial Crack Growth At High-Angle Grain Boundaries In Fe-Ni-Cr Alloys, Yuchu Wang, Bita Ghaffari, Christopher Taylor, Simon Lekakh, Carlos Engler-Pinto, Larry Godlewski, Yang Huo, Mei Li, Yue Fan Jul 2023

Nonmonotonic Effect Of Chemical Heterogeneity On Interfacial Crack Growth At High-Angle Grain Boundaries In Fe-Ni-Cr Alloys, Yuchu Wang, Bita Ghaffari, Christopher Taylor, Simon Lekakh, Carlos Engler-Pinto, Larry Godlewski, Yang Huo, Mei Li, Yue Fan

Electrical and Computer Engineering Faculty Research & Creative Works

An intermittent pattern is observed in the modeling of interfacial cyclic-loading crack growth at high-angle grain boundaries in ternary Fe-Ni-Cr alloys. Different from conventional wisdom of stress-intensity factor, the abrupt crack advances are found driven by extreme value statistics - namely, the aggregation of atoms with most compressive residual stresses. In addition, inherently non-affine atomic stress fluctuations are discovered, and the fluctuations peak at intermediate level of chemical heterogeneity, causing the fastest crack growth. Implications of such nonmonotonic mechanism in regard to the origin of intermediate-temperature embrittlement phenomena are also discussed.


Cascaded Sapphire Fiber Bragg Gratings Inscribed By Femtosecond Laser For Molten Steel Studies, Dinesh Reddy Alla, Deva Prasad Neelakandan, Farhan Mumtaz, Rex E. Gerald, Laura Bartlett, Ronald J. O'Malley, Jeffrey D. Smith, Jie Huang Jan 2023

Cascaded Sapphire Fiber Bragg Gratings Inscribed By Femtosecond Laser For Molten Steel Studies, Dinesh Reddy Alla, Deva Prasad Neelakandan, Farhan Mumtaz, Rex E. Gerald, Laura Bartlett, Ronald J. O'Malley, Jeffrey D. Smith, Jie Huang

Electrical and Computer Engineering Faculty Research & Creative Works

This research reports a distributed fiber optic high-temperature sensing system tailored for applications in the steel industry and various other sectors. Recent advancements in optical sensor technology have led to the exploration of sapphire crystal fibers as a solution for sensing in harsh environments. Utilizing a femtosecond (fs) laser, cascaded fiber Bragg gratings (FBGs) were meticulously fabricated within a multimode sapphire optical fiber. These FBGs endowed the system with distributed sensing capabilities and underwent rigorous testing under extreme temperatures, reaching up to 1,800 °C. The study delves into the investigation of the FBG reflection spectrum, facilitated by the development of …


Predicting Dissolution Kinetics Of Tricalcium Silicate Using Deep Learning And Analytical Models, Taihao Han, Sai Akshay Ponduru, Arianit Reka, Jie Huang, Gaurav Sant, Aditya Kumar Jan 2023

Predicting Dissolution Kinetics Of Tricalcium Silicate Using Deep Learning And Analytical Models, Taihao Han, Sai Akshay Ponduru, Arianit Reka, Jie Huang, Gaurav Sant, Aditya Kumar

Electrical and Computer Engineering Faculty Research & Creative Works

The dissolution kinetics of Portland cement is a critical factor in controlling the hydration reaction and improving the performance of concrete. Tricalcium silicate (C3S), the primary phase in Portland cement, is known to have complex dissolution mechanisms that involve multiple reactions and changes to particle surfaces. As a result, current analytical models are unable to accurately predict the dissolution kinetics of C3S in various solvents when it is undersaturated with respect to the solvent. This paper employs the deep forest (DF) model to predict the dissolution rate of C3S in the undersaturated solvent. The …


Predicting Compressive Strength And Hydration Products Of Calcium Aluminate Cement Using Data-Driven Approach, Sai Akshay Ponduru, Taihao Han, Jie Huang, Aditya Kumar Jan 2023

Predicting Compressive Strength And Hydration Products Of Calcium Aluminate Cement Using Data-Driven Approach, Sai Akshay Ponduru, Taihao Han, Jie Huang, Aditya Kumar

Electrical and Computer Engineering Faculty Research & Creative Works

Calcium aluminate cement (CAC) has been explored as a sustainable alternative to Portland cement, the most widely used type of cement. However, the hydration reaction and mechanical properties of CAC can be influenced by various factors such as water content, Li2CO3 content, and age. Due to the complex interactions between the precursors in CAC, traditional analytical models have struggled to predict CAC binders' compressive strength and porosity accurately. To overcome this limitation, this study utilizes machine learning (ML) to predict the properties of CAC. The study begins by using thermodynamic simulations to determine the phase assemblages of …