Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

Materials Science and Engineering

Faculty Publications

Materials treatment

Articles 1 - 2 of 2

Full-Text Articles in Engineering

In Situ Study Of The Role Of Substrate Temperature During Atomic Layer Deposition Of Hfo2 On Inp, H. Dong, Santosh Kc, X. Qin, B. Brennan, S. Mcdonnell, D. Zhernokletov, C. Hinkle, J. Kim, K. Cho, R. Wallace Oct 2013

In Situ Study Of The Role Of Substrate Temperature During Atomic Layer Deposition Of Hfo2 On Inp, H. Dong, Santosh Kc, X. Qin, B. Brennan, S. Mcdonnell, D. Zhernokletov, C. Hinkle, J. Kim, K. Cho, R. Wallace

Faculty Publications

The dependence of the “self cleaning” effect of the substrate oxides on substrate temperature during atomic layer deposition (ALD) of HfO2 on various chemically treated and native oxide InP (100) substrates is investigated using in situ X-ray photoelectron spectroscopy. The removal of In-oxide is found to be more efficient at higher ALD temperatures. The P oxidation states on native oxide and acid etched samples are seen to change, with the total P-oxide concentration remaining constant, after 10 cycles of ALD HfO2 at different temperatures. An (NH4)2 S treatment is seen to effectively remove native oxides and passivate the InP surfaces …


Reversible Mn Segregation At The Polar Surface Of Lithium Tetraborate, Christina L. Dugan, Robert L. Hengehold, Stephen R. Mchale, Juan A. Colon Santana, John W. Mcclory, Volodymyr T. Adamiv, Yaroslav V. Burak, Ya B. Losovyj, Peter A. Dowben Apr 2013

Reversible Mn Segregation At The Polar Surface Of Lithium Tetraborate, Christina L. Dugan, Robert L. Hengehold, Stephen R. Mchale, Juan A. Colon Santana, John W. Mcclory, Volodymyr T. Adamiv, Yaroslav V. Burak, Ya B. Losovyj, Peter A. Dowben

Faculty Publications

We find Mn surface segregation for single crystals of Mn doped Li2B4O7, nominally Li1.95Mn0.05B4O7(001), but as the temperature increases, evidence of this Mn surface segregation diminishes significantly. At room temperature, the surface photovoltaic charging is significant for this pyroelectric material but is quenched at a temperature well below that seen for the undoped Li2B4O7 samples. The suppression of surface charging in the region of 120 °C that accompanies the temperature of Mn dissolution in the bulk of Li2B4 …