Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

Computer Sciences

2018

Orienteering problem

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Iterated Local Search Algorithm For The Capacitated Team Orienteering Problem, Aldy Gunawan, Kien Ming Ng, Vincent F. Yu, Gordy Adiprasetyo, Hoong Chuin Lau Aug 2018

Iterated Local Search Algorithm For The Capacitated Team Orienteering Problem, Aldy Gunawan, Kien Ming Ng, Vincent F. Yu, Gordy Adiprasetyo, Hoong Chuin Lau

Research Collection School Of Computing and Information Systems

This paper focuses on a recent variant of the Orienteering Problem (OP), namely the Capacitated Team Orienteering Problem (CTOP). In this problem, each node is associated with a demand that needs to be satisfied and a score that need to be collected. Given a set of homogeneous fleet of vehicles, the main objective is to find a path for each available vehicle in order to maximize the total score, without violating the capacity and time budget of each vehicle. We propose an Iterated Local Search algorithm that has been applied in solving various variants of the OP. We propose two …


Adopt: Combining Parameter Tuning And Adaptive Operator Ordering For Solving A Class Of Orienteering Problems, Aldy Gunawan, Hoong Chuin Lau, Kun Lu Jul 2018

Adopt: Combining Parameter Tuning And Adaptive Operator Ordering For Solving A Class Of Orienteering Problems, Aldy Gunawan, Hoong Chuin Lau, Kun Lu

Research Collection School Of Computing and Information Systems

Two fundamental challenges in local search based metaheuristics are how to determine parameter configurations and design the underlying Local Search (LS) procedure. In this paper, we propose a framework in order to handle both challenges, called ADaptive OPeraTor Ordering (ADOPT). In this paper, The ADOPT framework is applied to two metaheuristics, namely Iterated Local Search (ILS) and a hybridization of Simulated Annealing and ILS (SAILS) for solving two variants of the Orienteering Problem: the Team Dependent Orienteering Problem (TDOP) and the Team Orienteering Problem with Time Windows (TOPTW). This framework consists of two main processes. The Design of Experiment (DOE) …