Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Engineering

Biomimic Fabrication Of Electrospun Nanofibers With High-Throughput, Ji-Huan He, Yong Liu, Lan Xu, Jian-Yong Yu, Gang Sun Jan 2008

Biomimic Fabrication Of Electrospun Nanofibers With High-Throughput, Ji-Huan He, Yong Liu, Lan Xu, Jian-Yong Yu, Gang Sun

Ji-Huan He

Spider-spun fiber is of extraordinary strength and toughness comparable to those of electrospun fiber, the later needs a very high voltage (from several thousands voltage to several ten thousands voltages) applied to water-soluble protein “soup” that was produced by a spider, furthermore, its mechanical strength dramatically decreases comparable to spider silk. A possible mechanism in spider-spinning process is given, the distinct character in spider-spinning is that its spinneret consists of millions of nano scale tubes, and a bubble can be produced at the apex of each nano-tube. The surface tension of each bubble is extremely small such that it can …


Effect Of Concentration On Electrospun Polyacrylonitrile (Pan) Nanofibers, Ji-Huan He, Yu-Qin Wan, Jian-Yong Yu Jan 2008

Effect Of Concentration On Electrospun Polyacrylonitrile (Pan) Nanofibers, Ji-Huan He, Yu-Qin Wan, Jian-Yong Yu

Ji-Huan He

Abstract: An allometrical scaling relationship between the diameter of electrospun nanofiber and solution concentration is established, the scaling exponent differs greatly between different polymers and the same polymer with different molecules or the same molecules with different properties. The diameter of electrospun polyacrylonitrile (PAN) nanofibers increases approximately linearly with solution concentration.


Controlling Numbers And Sizes Of Beads In Electrospun Nanofibers, Yong Liu, Ji-Huan He, Jian-Yong Yu, Hong-Mei Zeng Jan 2008

Controlling Numbers And Sizes Of Beads In Electrospun Nanofibers, Yong Liu, Ji-Huan He, Jian-Yong Yu, Hong-Mei Zeng

Ji-Huan He

Abstract BACKGROUND: Electrospinning is a powerful and effective method to produce nanofibers. Beads have been observed widely in electrospun products, but effects of solvents, weight concentrations and salt additives on the number and morphology of beads in the electrospinning process have not been systematically studied. RESULTS: Both theoretical analysis and experimental results show that beads strongly depend upon solvents, weight concentrations and salt additives. Either a suitable weight concentration or a suitable salt additive can completely prevent the occurrence of beads in the electrospinning process; solvents can affect the number of beads and the morphology of electrospun fibers. CONCLUSION: Beads …


A New Resistance Formulation For Carbon Nanotubes, Ji-Huan He Jan 2008

A New Resistance Formulation For Carbon Nanotubes, Ji-Huan He

Ji-Huan He

A new resistance formulation for carbon nanotubes is suggested using fractal approach. The new formulation is also valid for other nonmetal conductors including nerve fibers, conductive polymers, and molecular wires. Our theoretical prediction agrees well with experimental observation.


Non-Ionic Surfactants For Enhancing Electrospinability And For The Preparation Of Electrospun Nanofibers, Shu-Qiang Wang, Ji-Huan He, Lan Xu Jan 2008

Non-Ionic Surfactants For Enhancing Electrospinability And For The Preparation Of Electrospun Nanofibers, Shu-Qiang Wang, Ji-Huan He, Lan Xu

Ji-Huan He

Abstract BACKGROUND: Electrospinning is widely used to produce nanofibers; however, not every polymer can be electrospun into nanofibers. To enhance electrospinability, much effort has been made in designing new apparatus, such as vibration-electrospinning, magneto-electrospinning and bubble-electrospinning. RESULTS: A representative non-ionic surfactant, TritonR X-100, is used to enhance electrospinability. The surfactant is added to an electrospun poly(vinyl pyrrolidone) polymer solution, and a dramatic reduction in surface tension is observed. As a result, a moderate voltage is needed to produce fine nanofibers, which are commonly observed during the conventional electrospinning procedure only at elevated voltage. CONCLUSION: The novel strategy produces smaller nanofibers …


Nanocomposite Powders For New Contact Materials Based On Copper And Alumina, Zeljko J. Kamberovic Jan 2008

Nanocomposite Powders For New Contact Materials Based On Copper And Alumina, Zeljko J. Kamberovic

Zeljko J Kamberovic

This paper is a contribution to characterization of Cu-Al2O3 powders with nanostructure designed for the production of dispersion strengthened contact materials. New materials with predetermined properties can be successfully synthesized by utilizing the principles of hydrometallurgy and powder metallurgy. The results show a development of a new procedure for the synthesis. The applied characterization methods were differential thermal and thermogravimetric analysis (DTA-TGA), X-ray diffraction (XRD), scanning electron microscopy (SEM), Transmission Electron Microscopy (TEM): Focused Ion Beam (FIB) and Analytical Electron Microscopy (AEM). Nanostructure characteristics, particle size in range 20-50 nm, and uniform distribution of dispersoide in copper matrix were validated.


Determination Of Al2o3 Particle Size In Cu-Al2o3 Nanocomposite Materials Using Uv Spectrophotometry, Zeljko J. Kamberovic Jan 2008

Determination Of Al2o3 Particle Size In Cu-Al2o3 Nanocomposite Materials Using Uv Spectrophotometry, Zeljko J. Kamberovic

Zeljko J Kamberovic

In order to achieve improved mechanical properties of dispersion strengthened nanocomposite, without influencing electrical and thermal conductivity it is necessary for dispersoide to be nano sized and uniformly distributed in base metal matrix. In this paper are presented the results concerning possibility of using UV spectrophotometry for determination of alumina particle size in Cu-Al2O3 system. Presented results show that this method is unefficient as method for determination of dispersoide particle size, due to the coalescence of particles false results are obtained, i.e. particle size significantly higher then one determined by image analysis.


Electrospinning: A Promising Technology For Discontinuous And Continuous Nanofibers, Ji-Huan He Jan 2008

Electrospinning: A Promising Technology For Discontinuous And Continuous Nanofibers, Ji-Huan He

Ji-Huan He

No abstract provided.