Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Cylindrical Shell Based Phase Transforming Cellular Materials: Designing A Recoverable Energy Dissipating Material, Gordon F. Jarrold, David Restrepo, Nilesh Mankame, Pablo Zavattieri Aug 2017

Cylindrical Shell Based Phase Transforming Cellular Materials: Designing A Recoverable Energy Dissipating Material, Gordon F. Jarrold, David Restrepo, Nilesh Mankame, Pablo Zavattieri

The Summer Undergraduate Research Fellowship (SURF) Symposium

Energy dissipating materials are used in a variety of impact events to protect more important parts of a system; one example of this is a football player’s helmet protecting a brain. A major drawback to classic energy dissipating materials however is that they dissipate energy through plastic deformation, meaning that after a single use, permanent deformations will prevent the material from being reusable to the same capacity as initially. We have designed a 1D cellular material in which geometric phase transformations in cylindrical shell elements are the primary energy dissipating mechanism, allowing for recoverability after use while keeping high energy …


Modelling Of Phase Transforming Cellular Material (Pxcm), Chidubem N. Enebechi, Yunlan Zhang, David Restrepo Arango, Pablo Zavattieri Aug 2017

Modelling Of Phase Transforming Cellular Material (Pxcm), Chidubem N. Enebechi, Yunlan Zhang, David Restrepo Arango, Pablo Zavattieri

The Summer Undergraduate Research Fellowship (SURF) Symposium

Phase transforming cellular materials (PXCMs) are a new class of materials that can go through large deformation and return to their original configuration. Currently, there are reliable cellular materials that can resist large deformation, for example, honey comb; however, when these materials are compared to PXCMs, they cannot stay in their elastic range. The biggest advantage about PXCMs is that they are not only inexpensive materials, but they are also highly-durable and they absorb and dissipate high amounts of energy. The main concept behind PXCMs is that they contain unit cells that have stable configurations. Each stable configuration of the …