Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses and Dissertations - UTB/UTPA

Theses/Dissertations

Forcespinning

Publication Year

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Nanostructured Transition Metal Oxides For Energy Storage And Conversion, Qiang Li May 2014

Nanostructured Transition Metal Oxides For Energy Storage And Conversion, Qiang Li

Theses and Dissertations - UTB/UTPA

The conventional film configuration of electrochemical electrodes hardly fulfills the high energy and efficiency requirements because heavy electroactive material deposition restricts ion diffusion path, and lowers power density and fault tolerance. In this thesis, I demonstrate that novel nanoarchitectured transition metal oxides (TMOs), e.g. MnO2, V2O5, and ZnO, and their relevant nanocomposites were designed, fabricated and assembled into devices to deliver superior electrochemical performances such as high energy and power densities, and rate capacity. These improvements could be attributed to the significant enhancement of surface area, shortened ion diffusion distances and facile penetration of electrolyte solution into open structures of …


Fabrication And Characterization Of Polylactic Acid And Polylactic Acid/Multi-Walled Carbon Nanotube Nanofibers Through Centrifugal Spinning, Richard Patlan Dec 2012

Fabrication And Characterization Of Polylactic Acid And Polylactic Acid/Multi-Walled Carbon Nanotube Nanofibers Through Centrifugal Spinning, Richard Patlan

Theses and Dissertations - UTB/UTPA

Biocompatible polymer nanofibers hold great potential in the biomedical engineering field. Their biodegradable nature and enhanced properties could help solve a wide array of health related problems, particularly in the areas of tissue regeneration, drug delivery, and biosensor design. The novel ForcespinningTM method allows the production of submicron fibers without many of the drawbacks found in electrospinning, while also providing a substantial increase in fiber production. The aim of the study was to utilize this method to fabricate non-woven nanofibrous mats composed of polylactic acid (PLA) and polylactic acid/multi-walled carbon nanotube composite fibers. The morphology, thermal properties, and crystalline structure …


2d Modeling Of Forcespinning™ Nanofiber Formation With Experimental Study And Validation, Simon Padron Aug 2012

2d Modeling Of Forcespinning™ Nanofiber Formation With Experimental Study And Validation, Simon Padron

Theses and Dissertations - UTB/UTPA

A newly developed method of producing nanofibers, called Forcespinning™, has proven to be a viable alternative to mass produce nanofibers. Forcespinning™ utilizes centrifugal forces which allow for a host of new materials to be processed into nanofibers while also providing a significant increase in yield and ease of production. To improve and enhance the Forcespinning™ production method, a 2D computational Forcespinning™ fluid dynamics model is developed. Three computer models, namely time-independent and time-dependent inviscid models and a viscous model are obtained and the influences of various parameters on Forcespinning™ fiber formation are obtained. This work also presents a detailed explanation …


Production And Characterization Of Biodegradable Nanofibers Via Forcespinning™ Technology, Zachary T. Mceachin Jul 2012

Production And Characterization Of Biodegradable Nanofibers Via Forcespinning™ Technology, Zachary T. Mceachin

Theses and Dissertations - UTB/UTPA

Among the myriad of methods for polymer nanofiber production, there are only a few methods that can produce submicron range fibers in bulk from melt or solution samples. The Forcespinning™ method allows a substantial increase in sample yield; this greatly reduces the time needed to produce bulk quantities of fibers which may be critical in many fields of research and industry, in particularly in fields relating to biopolymers. The aim of the first study was to utilize this method to form non-woven mats of polycaprolactone (PCL) nanofibers and to quantitatively analyze the production and characterization of the produced fibers. The …