Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Modelling Catalytic Structures With Python And Ase, Tommie L. Day, Peilin Liao, Pilsun Yoo Aug 2017

Modelling Catalytic Structures With Python And Ase, Tommie L. Day, Peilin Liao, Pilsun Yoo

The Summer Undergraduate Research Fellowship (SURF) Symposium

Voltaic cells hold great potential as a source of clean electricity generation. These fuel sources are more efficient than combustion engines, and they do not produce environmentally harmful by-products. The electrochemical reaction which occurs within the cell is typically catalyzed by platinum, which increases the cost. The search for a better performing, less expensive catalyst is hindered by the lack of a complete, predictive theory of catalysis. Using Quantum Espresso and the Atomic Simulation Environment library for Python, we created a tool for nanoHUB.org which can visually and computationally model catalytic surfaces. This tool can simulate nanoparticles and metallic surfaces …


Verification Of Tfit Code Numerical Method For Flow Excursion Simulation, Patrick S. Foster, Subash Sharma, Martin L. Bertodano Aug 2017

Verification Of Tfit Code Numerical Method For Flow Excursion Simulation, Patrick S. Foster, Subash Sharma, Martin L. Bertodano

The Summer Undergraduate Research Fellowship (SURF) Symposium

This research is aimed towards accurately modeling and predicting the onset of the two-phase flow excursion instability using the code TFIT (Two Fluid Interfacial Temperature). In order to do this we first had to show that the numerical diffusion of the code’s finite difference equations could be reduced to an insignificant level by decreasing the mesh size.

Understanding and being able to accurately model flow excursion can help us understand how to prevent the potential negative effects of this instability. We are using a two-fluid model with physics-based closure relations. The results will be validated against the experimental data available …


Simulating Dynamic Failure Of Polymer-Bonded Explosives Under Periodic Excitation, Rachel Kohler, Camilo Duarte Cordon, Marisol Koslowski Aug 2017

Simulating Dynamic Failure Of Polymer-Bonded Explosives Under Periodic Excitation, Rachel Kohler, Camilo Duarte Cordon, Marisol Koslowski

The Summer Undergraduate Research Fellowship (SURF) Symposium

Accidental mishandling of explosive materials leads to thousands of injuries in the US every year. Understanding the mechanisms behind the detonation process is crucial to prevent such accidents. In polymer-bonded explosives (PBX), high-frequency mechanical excitation generates thermal energy and can lead to an increase in temperature and vapor pressure, and potentially the initiation of the detonation process. However, the mechanisms behind this energy release, such as the effects of dynamic fracture and friction, are not well understood. Experimental data is difficult to collect due to the different time scales of reactions and vibrations, so research is aided by running simulations …