Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Publications

Partial Differential Equations

Internal Variable

Publication Year

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Thermoelastic Waves In Microstructured Solids, Arkadi Berezovski, Mihhail Berezovski Feb 2016

Thermoelastic Waves In Microstructured Solids, Arkadi Berezovski, Mihhail Berezovski

Publications

Thermoelastic wave propagation suggests a coupling between elastic deformation and heat conduction in a body. Microstructure of the body influences the both processes. Since energy is conserved in elastic deformation and heat conduction is always dissipative, the generalization of classical elasticity theory and classical heat conduction is performed differently. It is shown in the paper that a hyperbolic evolution equation for microtemperature can be obtained in the framework of the dual internal variables approach keeping the parabolic equation for the macrotemperature. The microtemperature is considered as a macrotemperature fluctuation. Numerical simulations demonstrate the formation and propagation of thermoelastic waves in …


Influence Of Microstructure On Thermoelastic Wave Propagation, Arkadi Berezovski, Mihhail Berezovski May 2013

Influence Of Microstructure On Thermoelastic Wave Propagation, Arkadi Berezovski, Mihhail Berezovski

Publications

Numerical simulations of the thermoelastic response of a microstructured material on a thermal loading are performed in the one-dimensional setting to examine the influence of temperature gradient effects at the microstructure level predicted by the thermoelastic description of microstructured solids (Berezovski et al. in J. Therm. Stress. 34:413–430, 2011). The system of equations consisting of a hyperbolic equation of motion, a parabolic macroscopic heat conduction equation, and a hyperbolic evolution equation for the microtemperature is solved by a finite-volume numerical scheme. Effects of microtemperature gradients exhibit themselves on the macrolevel due to the coupling of equations of the macromotion …


Waves In Microstructured Solids: A Unified Viewpoint Of Modelling, Arkadi Berezovski, Juri Engelbrecht, Mihhail Berezovski Mar 2011

Waves In Microstructured Solids: A Unified Viewpoint Of Modelling, Arkadi Berezovski, Juri Engelbrecht, Mihhail Berezovski

Publications

The basic ideas for describing the dispersive wave motion in microstructured solids are discussed in the one-dimensional setting because then the differences between various microstructure models are clearly visible. An overview of models demonstrates a variety of approaches, but the consistent structure of the theory is best considered from the unified viewpoint of internal variables. It is shown that the unification of microstructure models can be achieved using the concept of dual internal variables.


Deformation Waves In Microstructured Materials: Theory And Numerics, Juri Engelbrecht, Arkadi Berezovski, Mihhail Berezovski Sep 2010

Deformation Waves In Microstructured Materials: Theory And Numerics, Juri Engelbrecht, Arkadi Berezovski, Mihhail Berezovski

Publications

A linear model of the microstructured continuum based on Mindlin theory is adopted which can be represented in the framework of the internal variable theory. Fully coupled systems of equations for macro-motion and microstructure evolution are represented in the form of conservation laws. A modification of wave propagation algorithm is used for numerical calculations. Results of direct numerical simulations of wave propagation in periodic medium are compared with similar results for the continuous media with the modelled microstructure. It is shown that the proper choice of material constants should be made to match the results obtained by both approaches