Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Open Access Theses & Dissertations

Electron Beam Melting

Engineering Science and Materials

Publication Year

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Characterization Of High-Purity Niobium Structures Fabricated Using The Electron Beam Melting Process, Cesar Adrian Terrazas Jan 2014

Characterization Of High-Purity Niobium Structures Fabricated Using The Electron Beam Melting Process, Cesar Adrian Terrazas

Open Access Theses & Dissertations

Additive Manufacturing (AM) refers to the varied set of technologies utilized for the fabrication of complex 3D components from digital data in a layer-by-layer fashion. The use of these technologies promises to revolutionize the manufacturing industry. The electron beam melting (EBM) process has been utilized for the fabrication of fully dense near-net-shape components from various metallic materials. This process, catalogued as a powder bed fusion technology, consists of the deposition of thin layers (50 - 120µm) of metallic powder particles which are fused by the use of a high energy electron beam and has been commercialized by Swedish company Arcam …


Reducing Metal Alloy Powder Costs For Use In Powder Bed Fusion Additive Manufacturing: Improving The Economics For Production, Fransisco Medina Jan 2013

Reducing Metal Alloy Powder Costs For Use In Powder Bed Fusion Additive Manufacturing: Improving The Economics For Production, Fransisco Medina

Open Access Theses & Dissertations

Titanium and its associated alloys have been used in industry for over 50 years and have become more popular in the recent decades. Titanium has been most successful in areas where the high strength to weight ratio provides an advantage over aluminum and steels. Other advantages of titanium include biocompatibility and corrosion resistance. Electron Beam Melting (EBM) is an additive manufacturing (AM) technology that has been successfully applied in the manufacturing of titanium components for the aerospace and medical industry with equivalent or better mechanical properties as parts fabricated via more traditional casting and machining methods. As the demand for …


The Influence Of Build Parameters On The Microstructure During Electron Beam Melting Of Ti6al4v, Karina Puebla Jan 2012

The Influence Of Build Parameters On The Microstructure During Electron Beam Melting Of Ti6al4v, Karina Puebla

Open Access Theses & Dissertations

With the demand of devices to replace or improve areas, such as: electronic, biomedical and aerospace industries. Improvements in these areas of engineering have been in need due to the customer’s needs for product properties requirements. The design of components must exhibit better material properties (mechanical or biocompatible) close to those of any given product. Rapid prototyping (RP) technologies that were originally designed to build prototypes may now be required to build functional end-use products. To carry out the transition, from RP to rapid manufacturing (RM), the available materials utilized in RP must provide the performance required for RM. The …


Microstructural Architecture Developed In The Fabrication Of Solid And Open-Cellular Copper Components By Additive Manufacturing Using Electron Beam Melting, Diana Alejandra Ramirez Jan 2011

Microstructural Architecture Developed In The Fabrication Of Solid And Open-Cellular Copper Components By Additive Manufacturing Using Electron Beam Melting, Diana Alejandra Ramirez

Open Access Theses & Dissertations

The fabrication of Cu components were first built by additive manufacturing using electron beam melting (EBM) from low-purity, atomized Cu powder containing a high density of Cu2O precipitates leading to a novel example of precipitate-dislocation architecture. These microstructures exhibit cell-like arrays (1-3µm) in the horizontal reference plane perpendicular to the build direction with columnar-like arrays extending from ~12 to >60 µm in length and corresponding spatial dimensions of 1-3 µm. These observations were observed by the use of optical metallography, and scanning and transmission electron microscopy. The hardness measurements were taken both on the atomized powder and the Cu components. …