Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Engineering

Coal With Carbon Capture And Sequestration Is Not As Land Use Efficient As Solar Photovoltaic Technology For Climate Neutral Electricity Production, James Gunnar Groesbeck, Joshua M. Pearce Sep 2018

Coal With Carbon Capture And Sequestration Is Not As Land Use Efficient As Solar Photovoltaic Technology For Climate Neutral Electricity Production, James Gunnar Groesbeck, Joshua M. Pearce

Michigan Tech Publications

Avoiding climate destabilization caused by greenhouse gas (GHG) emissions, requires climate-neutral electricity sources. It has been proposed that the GHG emissions from coal-fired power plants can be offset by carbon capture and sequestration or bio-sequestration. However, solar photovoltaic (PV) technology has recently declined so far in costs it now offers both technical and economic potential to offset all of coal-fired electricity use. PV only emits GHGs during fabrication and not during use. To determine which technical solution to climate-neutral electricity generation should be preferred, this study aggregates and synthesizes life cycle analysis studies for exergy, GHG emissions and land transformation …


Energy Science And Engineering: Looking Ahead, Yun Hang Hu Aug 2018

Energy Science And Engineering: Looking Ahead, Yun Hang Hu

Michigan Tech Publications

No abstract provided.


Sponsored Libre Research Agreements To Create Free And Open Source Software And Hardware, Joshua M. Pearce Jul 2018

Sponsored Libre Research Agreements To Create Free And Open Source Software And Hardware, Joshua M. Pearce

Michigan Tech Publications

As a growing number of companies reject intellectual property (IP) monopoly-based business models to embrace libre product development of free and open source hardware and software, there is an urgent need to refurbish the instruments of university-corporate research partnerships. These partnerships generally use a proprietary standard research agreement (PSRA), which for historical reasons contains significant IP monopoly language and restrictions for both the company and the university. Such standard research agreements thus create an artificial barrier to innovation as both companies using a libre model and universities they wish to collaborate with must invest significantly to restructure the contracts. To …


Effect Of Zr Additions On Thermal Stability Of Al-Cu Precipitates In As-Cast And Cold Worked Samples, Kyle Deane, Paul G. Sanders May 2018

Effect Of Zr Additions On Thermal Stability Of Al-Cu Precipitates In As-Cast And Cold Worked Samples, Kyle Deane, Paul G. Sanders

Michigan Tech Publications

While Zr is frequently added to Al alloys to control grain size with the formation of large (>1 μm) primary precipitates, little research has been conducted on the effect of nanoscale Al3Zr precipitates on Al alloys. By comparing the precipitation and corresponding strength evolution between Al-Cu-Zr alloys with different Zr concentrations, the effects of Zr on Al-Cu precipitation with and without primary Al3Zr precipitates can be observed. In the absence of these large precipitates, all Al3Zr phases can be formed, through high temperature aging treatments, as a dispersion of nanoprecipaites inside the Al …


The Natural Aging Effect On Hardenability In Al-Mg-Si: A Complex Interaction Between Composition And Heat Treatment Parameters, Alex Poznak, Violet Thole, Paul G. Sanders May 2018

The Natural Aging Effect On Hardenability In Al-Mg-Si: A Complex Interaction Between Composition And Heat Treatment Parameters, Alex Poznak, Violet Thole, Paul G. Sanders

Michigan Tech Publications

The technological relevance of Al-Mg-Si alloys has been rapidly growing over the last decade. Of particular interest to current and future applications is the problematic negative effect of prior natural aging on subsequent artificial age hardening. The influence of natural aging is dependent on both processing and compositional variables and has origins that are far from well-understood. This work examines the hardenability of 6000 series alloys under a wide range of conditions, paying particular attention to the natural aging effect. Experimental variables include alloy composition (Mg + Si, Mg/Si), cooling rate after solutionization, and duration of prior natural aging. Hardenability …


The Suitability Of Zn–1.3% Fe Alloy As A Biodegradable Implant Material, Alon Kafri, Shira Ovadia, Jeremy Goldman, Jaroslaw W. Drelich, Eli Aghion Feb 2018

The Suitability Of Zn–1.3% Fe Alloy As A Biodegradable Implant Material, Alon Kafri, Shira Ovadia, Jeremy Goldman, Jaroslaw W. Drelich, Eli Aghion

Michigan Tech Publications

Efforts to develop metallic zinc for biodegradable implants have significantly advanced following an earlier focus on magnesium (Mg) and iron (Fe). Mg and Fe base alloys experience an accelerated corrosion rate and harmful corrosion products, respectively. The corrosion rate of pure Zn, however, may need to be modified from its reported ~20 µm/year penetration rate, depending upon the intended application. The present study aimed at evaluating the possibility of using Fe as a relatively cathodic biocompatible alloying element in zinc that can tune the implant degradation rate via microgalvanic effects. The selected Zn–1.3wt %Fe alloy composition produced by gravity casting …