Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 20 of 20

Full-Text Articles in Engineering

Software-And Hardware-In-The-Loop Verification Of Flight Dynamics Model And Flight Control Simulation Of A Fixed-Wing Unmanned Aerial Vehicle, Calvin Coopmans, Michal Podhradsk, Nathan V. Hoffer Nov 2015

Software-And Hardware-In-The-Loop Verification Of Flight Dynamics Model And Flight Control Simulation Of A Fixed-Wing Unmanned Aerial Vehicle, Calvin Coopmans, Michal Podhradsk, Nathan V. Hoffer

Mechanical and Aerospace Engineering Faculty Publications

Unmanned aerial system (UAS) use is ever-increasing. In this paper, it is shown that even with low-cost hardware and open-source software, simple numerical testing practices (software- and hardware-in-the-loop) can prove the accuracy and usefulness of an aeronautical flight model, as well as provide valuable pre-flight testing of many situations typically only encountered in flight: high winds, hardware failure, etc. Software and hardware simulation results are compared with actual flight testing results to show that these modeling and testing techniques are accurate and provide a useful testing platform for a small unmanned aerial vehicle. Source code used in simulation is open …


Wideband Fluorescence-Based Thermometry By Neural Network Recognition: Photothermal Application With 10 Ns Time Resolution, Liwang Liu, Kuo Zhong, Troy Munro, Salvador Alvarado, Renaud Cote, Sebastiaan Creten, Eduard Fron, Heng Ban, Mark Van Der Auweraer, N. B. Roozen, Osamu Matsuda, Christ Glorieux Nov 2015

Wideband Fluorescence-Based Thermometry By Neural Network Recognition: Photothermal Application With 10 Ns Time Resolution, Liwang Liu, Kuo Zhong, Troy Munro, Salvador Alvarado, Renaud Cote, Sebastiaan Creten, Eduard Fron, Heng Ban, Mark Van Der Auweraer, N. B. Roozen, Osamu Matsuda, Christ Glorieux

Mechanical and Aerospace Engineering Faculty Publications

Neural network recognition of features of the fluorescence spectrum of a thermosensitive probe is exploited in order to achieve fluorescence-based thermometry with an accuracy of 200 mK with 100 MHz bandwidth, and with high robustness against fluctuations of the probe laser intensity used. The concept is implemented on a rhodamine B dyed mixture of copper chloride and glycerol, and the temperature dependent fluorescence is investigated in the temperature range between 234 K and 311 K. The spatial dependence of the calibrated amplitude and phase of photothermally induced temperature oscillations along the axis of the excitation laser are determined at different …


Contributions Of Mass And Bond Energy Difference And Interface Defects On Thermal Boundary Conductance, Nicholas A. Roberts, Changjin Choi Sep 2015

Contributions Of Mass And Bond Energy Difference And Interface Defects On Thermal Boundary Conductance, Nicholas A. Roberts, Changjin Choi

Mechanical and Aerospace Engineering Faculty Publications

The impact of mass and bond energy difference and interface defects on thermal boundary conductance (TBC) is investigated using non-equilibrium molecular dynamics (NEMD) with the Lennard-Jones (L-J) interatomic potential. Results show that the maximum TBC is achieved when the mass and bond energy of two dissimilar materials are matched, although the effective thermal conductivity is not necessarily a maximum due to the contributions of the thermal conductivity of the constituent materials. Mass and bond energy differences result in a mismatch between phonon dispersions, limiting high frequency phonon transport at the interface. This frequency mismatch is defined by a frequency ratio, …


Feasibility Of Wireless Power Transfer For Electrification Of Transportation: Techno-Economics And Life Cycle Assessment, Jason C. Quinn, B. J. Limb, P. Barr Jul 2015

Feasibility Of Wireless Power Transfer For Electrification Of Transportation: Techno-Economics And Life Cycle Assessment, Jason C. Quinn, B. J. Limb, P. Barr

Mechanical and Aerospace Engineering Faculty Publications

Integration of wireless power transfer (WPT) systems in roadways and vehicles represents a promising alternative to traditional internal combustion transportation systems. The economic feasibility and environmental impact of WPT applied to the transportation system is evaluated through the development of engineering system models. For a 20% penetration of the WPT technology in vehicles, results show a 20% reduction in air pollutants, 10% reduction in energy use and CO2 emissions and a societal level payback (defined as total cost of ownership savings compared to a traditional vehicle equal to roadway infrastructure) of 3 years. The modeled system covers 86% of all …


Evaluation Of Different Optimal Control Problem Formulations For Solving The Muscle Redundancy Problem, Friedl De Groote, Allison Kinney, Anil Rao, Benjamin J. Fregly Jul 2015

Evaluation Of Different Optimal Control Problem Formulations For Solving The Muscle Redundancy Problem, Friedl De Groote, Allison Kinney, Anil Rao, Benjamin J. Fregly

Mechanical and Aerospace Engineering Faculty Publications

This study evaluates several possible optimal control problem formulations for solving the muscle redundancy problem with the goal of identifying the most efficient and robust formulation. One novel formulation involves the introduction of additional controls that equal the time derivative of the states, resulting in very simple dynamic equations. The nonlinear equations describing muscle dynamics are then imposed as algebraic constraints in their implicit form, simplifying their evaluation. By comparing different problem formulations for computing muscle controls that can reproduce inverse dynamic joint torques during gait, we demonstrate the efficiency and robustness of the proposed novel formulation.


Wing Tip Vortices From An Exergy-Based Perspective, Muhammad Omar Memon, Kevin Wabick, Aaron Altman, Rainer M. Buffo Jul 2015

Wing Tip Vortices From An Exergy-Based Perspective, Muhammad Omar Memon, Kevin Wabick, Aaron Altman, Rainer M. Buffo

Mechanical and Aerospace Engineering Faculty Publications

The lens of exergy is used to investigate a wingtip vortex in the near wake over a range of angles of attack. Exergy is the measure of thermodynamically “available” energy as determined through the more discriminating second law of thermodynamics. Experiments were conducted in a water tunnel at Institute of Aerospace Systems at Aachen.

The data were taken three chord lengths downstream in the Trefftz plane of an aspect ratio 5 Clark-Y wing with a square-edged wing tip using particle image velocimetry. Intuitively, the minimum available energy state is expected to correspond to the maximum lift-to-drag ratio angle of attack. …


Development Of A Muscle Model Parameter Calibration Method Via Passive Muscle Force Minimization, Allison Kinney, Benjamin J. Fregly Jul 2015

Development Of A Muscle Model Parameter Calibration Method Via Passive Muscle Force Minimization, Allison Kinney, Benjamin J. Fregly

Mechanical and Aerospace Engineering Faculty Publications

Computational predictions of subject-specific muscle and knee joint contact forces during walking may improve individual rehabilitation treatment design. Such predictions depend directly on specified model parameter values. However, model parameters are difficult to measure non-invasively. Methods for muscle model parameter calibration have been developed previously. However, it is currently unknown how the musculoskeletal system chooses muscle model parameter values. Previous studies have hypothesized that muscles avoid injury during walking by generating little passive force and operating in the ascending region of the force-length curve. This hypothesis suggests that muscle model parameter values may be selected by the body to minimize …


Synergy-Based Two-Level Optimization For Predicting Knee Contact Forces During Walking, Gil Serrancolí, Allison Kinney, Josep M. Font-Llagunes, Benjamin J. Fregly Jul 2015

Synergy-Based Two-Level Optimization For Predicting Knee Contact Forces During Walking, Gil Serrancolí, Allison Kinney, Josep M. Font-Llagunes, Benjamin J. Fregly

Mechanical and Aerospace Engineering Faculty Publications

Musculoskeletal models and optimization methods are combined to calculate muscle forces. Some model parameters cannot be experimentally measured due to the invasiveness, such as the muscle moment arms or the muscle and tendon lengths. Moreover, other parameters used in the optimization, such as the muscle synergy components, can be also unknown. The estimation of all these parameters needs to be validated to obtain physiologically consistent results. In this study, a two-step optimization problem was formulated to predict both muscle and knee contact forces of a subject wearing an instrumented knee prosthesis. In the outer level, muscle parameters were calibrated, whereas …


Perspectives Of Pedagogical Change Within A Broadcast Stem Course, Angela L. Minichiello, Ted Campbell, James T. Dorwand, Sherry Marx Jun 2015

Perspectives Of Pedagogical Change Within A Broadcast Stem Course, Angela L. Minichiello, Ted Campbell, James T. Dorwand, Sherry Marx

Mechanical and Aerospace Engineering Faculty Publications

As calls for pedagogical transformation of undergraduate science, technology, engineering, and mathematics (STEM) instruction intensify, the pace of change remains slow. The literature shows that research-based instructional strategies transfer only sporadically into STEM instructional practice. Difficulties associated with implementation and sustainment of instructional change may appear daunting— if not insurmountable—to many STEM change agents and teaching faculty. Subsequently, the path towards systematic and lasting pedagogical transformation in post-secondary STEM stands largely uncharted.

To understand how challenges faced by STEM educators engaged in pedagogical change may be overcome, this paper uses qualitative inquiry to explore an emergent process of teacher change. …


Hydrogen And Syngas Production From Gasification Of Lignocellulosic Biomass In Supercritical Water Media, Jun-Ki Choi, Abtin Ataei, Ahmad Tavasoli, Farid Safari Jun 2015

Hydrogen And Syngas Production From Gasification Of Lignocellulosic Biomass In Supercritical Water Media, Jun-Ki Choi, Abtin Ataei, Ahmad Tavasoli, Farid Safari

Mechanical and Aerospace Engineering Faculty Publications

Novel biomass-processing technologies have been recently used for conversion of organic wastes into valuable biofuels like bio-hydrogen. Agricultural wastes are available and renewable energy resources to supply energy demand of the future. The purpose of this study is to investigate the production of hydrogen-rich syngas from wheat straw, walnut shell, and almond shell.


The Influence Of Neuromusculoskeletal Model Calibration Method On Predicted Knee Contact Forces During Walking, Gil Serrancolí, Allison Kinney, Benjamin J. Fregly, Josep M. Font-Llagunes Jun 2015

The Influence Of Neuromusculoskeletal Model Calibration Method On Predicted Knee Contact Forces During Walking, Gil Serrancolí, Allison Kinney, Benjamin J. Fregly, Josep M. Font-Llagunes

Mechanical and Aerospace Engineering Faculty Publications

This study explored the influence of three model calibration methods on predicted knee contact and leg muscle forces during walking. Static optimization was used to calculate muscle activations for all three methods. Approach A used muscle-tendon model parameter values (i.e., optimal muscle fiber lengths and tendon slack lengths) taken directly from literature. Approach B used a simple algorithm to calibrate muscle-tendon model parameter values such that each muscle operated within the ascending region of its normalized force-length curve. Approach C used a novel two-level optimization procedure to calibrate muscle-tendon, moment arm, and neural control model parameter values while simultaneously predicting …


A Mechanical Regenerative Brake And Launch Assist Using An Open Differential And Elastic Energy Storage, David H. Myszka, Andrew P. Murray, Kevin Giaier, Vijay Krishna Jayaprakash, Christoph Gillum Apr 2015

A Mechanical Regenerative Brake And Launch Assist Using An Open Differential And Elastic Energy Storage, David H. Myszka, Andrew P. Murray, Kevin Giaier, Vijay Krishna Jayaprakash, Christoph Gillum

Mechanical and Aerospace Engineering Faculty Publications

Regenerative brake and launch assist (RBLA) systems are used to capture kinetic energy while a vehicle decelerates and subsequently use that stored energy to assist propulsion. Commercially available hybrid vehicles use generators, batteries and motors to electrically implement RBLA systems. Substantial increases in vehicle efficiency have been widely cited.

This paper presents the development of a mechanical RBLA that stores energy in an elastic medium. An open differential is coupled with a variable transmission to store and release energy to an axle that principally rotates in a single direction. The concept applies regenerative braking technology to conventional automobiles equipped with …


Propulsion Theory Of Flapping Airfoils, Comparison With Computational Fluid Dynamics, Doug F. Hunsaker, W. F. Phillips Jan 2015

Propulsion Theory Of Flapping Airfoils, Comparison With Computational Fluid Dynamics, Doug F. Hunsaker, W. F. Phillips

Mechanical and Aerospace Engineering Faculty Publications

The thrust, required power, and propulsive efficiency of a flapping airfoil as predicted by the well-known Theodorsen model are compared with solutions obtained from grid- resolved inviscid computational fluid dynamics. A straight-forward summary of Theodorsen’s flapping airfoil model is presented using updated terminology and symbols. This shows that both axial and normal reduced frequencies are of significant importance. The axial reduced frequency is based on the chord length and the normal reduced frequency is based on the plunging amplitude. Computational fluid dynamics solutions are presented over the range of both reduced frequencies typically encountered in the forward flight of birds. …


Experimental Validation Data For Cfd Of Mixed Convection On A Vertical Flat Plate, Blake W. Lance, Jeff R. Harris, Barton L. Smith Jan 2015

Experimental Validation Data For Cfd Of Mixed Convection On A Vertical Flat Plate, Blake W. Lance, Jeff R. Harris, Barton L. Smith

Mechanical and Aerospace Engineering Faculty Publications

Model validation for Computational Fluid Dynamics(CFD), where experimental data and model outputs are com-pared, is a key tool for assessing model uncertainty. In this work, mixed convection is studied experimentally for the purpose of providing validation data for CFD models with a high level of completeness. Experiments are performed in a facility built specifically for validation with a vertical, flat,heated wall. Data were acquired for both buoyancy-aided and buoyancy-opposed flows. Measured boundary conditions include as-built geometry, inflow mean and fluctuating velocity profiles, and inflow and wall temperatures. Additionally, room air temperature, pressure, and relative humidity are measured to provide fluid …


High Regression Rate Hybrid Rocket Fuel Grains With Helical Port Structures, Stephen A. Whitmore, Sean D. Walker, Daniel P. Merkley, Mansour Sobbi Jan 2015

High Regression Rate Hybrid Rocket Fuel Grains With Helical Port Structures, Stephen A. Whitmore, Sean D. Walker, Daniel P. Merkley, Mansour Sobbi

Mechanical and Aerospace Engineering Faculty Publications

Results froma development campaign, where modern additive manufacturing methods are used to fabricate hybrid rocket fuel grains with embedded helical ports, are presented. The fuel grains were constructed from acrlyonitrile butadiene styrene using commercially available three-dimensional printer feedstockmaterial.Gaseous oxygen is used as the oxidizer for this test campaign.When compared to cylindrical fuel ports, significant increases in fuel regression rates were observed, and these increases in regression rate diminished with time as the helical fuel port burns to become progressivelymore cylindrical. Comparisons to the helical pipe flow skin friction correlation developed by Mishra and Gupta indicate that increased skin friction only …


Matryoshka Cavity, Randy Craig Hurd, T. Fanning, Zhao Pan, C. Maybey, Kyle G. Bodily, Kip Schafer Hacking, Nathan B. Spiers, Tadd T. Truscott Jan 2015

Matryoshka Cavity, Randy Craig Hurd, T. Fanning, Zhao Pan, C. Maybey, Kyle G. Bodily, Kip Schafer Hacking, Nathan B. Spiers, Tadd T. Truscott

Mechanical and Aerospace Engineering Faculty Publications

When a water droplet impacts a free surface with sufficient velocity, the momentum transfer results in the formation of a hemispherical cavity expanding radially from the point of impact.1 This cavity continues to expand until the kinetic energy is completely converted to potential energy (Fig. 1(a)).2 Pumphrey and Elmore equated the potential energy of this subsurface cavity with the kinetic energy of the impacting droplet, concluding that the magnitude of the cavity radius is proportional to impact velocity and droplet diameter.3


The Study Of Frequency-Scan Photothermal Reflectance Technique For Thermal Diffusivity Measurement, Zilong Hua, Heng Ban, David H. Hurley Jan 2015

The Study Of Frequency-Scan Photothermal Reflectance Technique For Thermal Diffusivity Measurement, Zilong Hua, Heng Ban, David H. Hurley

Mechanical and Aerospace Engineering Faculty Publications

A frequency scan photothermal reflectance technique to measure thermal diffusivity of bulk samples is studied in this manuscript. Similar to general photothermal reflectance methods, an intensity-modulated heating laser and a constant intensity probe laser are used to determine the surface temperature response under sinusoidal heating. The approach involves fixing the distance between the heating and probe laser spots, recording the phase lag of reflected probe laser intensity with respect to the heating laser frequency modulation, and extracting thermal diffusivity using the phase lag–(frequency)1/2 relation. The experimental validation is performed on three samples (SiO2, CaF2, and …


Simulating Energy Efficient Control Of Multiple-Compressor Compressed Air Systems, Sean Murphy, J. Kelly Kissock Jan 2015

Simulating Energy Efficient Control Of Multiple-Compressor Compressed Air Systems, Sean Murphy, J. Kelly Kissock

Mechanical and Aerospace Engineering Faculty Publications

In many industrial facilities it is common for more than one air compressor to be operating simultaneously to meet the compressed air demand. The individual compressor set-points and how these compressors interact and respond to the facility demand have a significant impact on the compressed air system total power consumption and efficiency. In the past, compressors were staged by cascading the pressure band of each compressor in the system. Modern automatic sequencers now allow more intelligent and efficient staging of air compressors.

AirSim, a compressed air simulation tool, is now able to simulate multiple-compressor systems with pressure band and automatic …


A Multi-Directional Treadmill Training Program For Improving Gait, Balance, And Mobility In Individuals With Parkinson’S Disease: A Case Series, Kimberly Smith, Kurt Jackson, Kimberly Edginton Bigelow, Lloyd L. Laubach Jan 2015

A Multi-Directional Treadmill Training Program For Improving Gait, Balance, And Mobility In Individuals With Parkinson’S Disease: A Case Series, Kimberly Smith, Kurt Jackson, Kimberly Edginton Bigelow, Lloyd L. Laubach

Mechanical and Aerospace Engineering Faculty Publications

Treadmill training is a commonly used intervention for improving gait in people with Parkinson’s disease (PD). However, little is known about how treadmill training may also influence balance and other aspects of mobility.

The purpose of this case series was to explore the feasibility and possible benefits of multi-directional treadmill training for individuals with PD. Four participants (62.3 ± 6.5 yrs, Hoehn & Yahr 2-4) performed 8 weeks of treadmill training 3 times per week. Weeks 1-4 included forward walking only, while weeks 5-8 included forward and multi-directional walking. Participants were tested every 4 weeks on 4 separate occasions. Outcome …


Buckling Instability Of Crown Sealing, J. O. Marston, Mohammad M. Mansoor, Tadd T. Truscott, S. T. Thoroddsen Jan 2015

Buckling Instability Of Crown Sealing, J. O. Marston, Mohammad M. Mansoor, Tadd T. Truscott, S. T. Thoroddsen

Mechanical and Aerospace Engineering Faculty Publications

Despite the scholarly fascination with water entry of spheres for well over a century,1 we present a new observation, namely, the crown-buckling instability. This instability is characterized by striations appearing near the top of the crown walls just prior to the surface seal, as shown in Fig. 1(a). The crown wall collapses inward due to the pressure differential across the wall created by the moving air in the wake of the sphere and surface tension within the crown. Since the rate of collapse is faster than that at which fluid drains out from the neck region, fluid collects into …