Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering Faculty Research & Creative Works

Series

3D printing

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Additive Manufacturing Of Sic-Sialon Refractory With Excellent Properties By Direct Ink Writing, Ruoyu Chen, Saisai Li, Xinxin Jin, Haiming Wen Jan 2023

Additive Manufacturing Of Sic-Sialon Refractory With Excellent Properties By Direct Ink Writing, Ruoyu Chen, Saisai Li, Xinxin Jin, Haiming Wen

Materials Science and Engineering Faculty Research & Creative Works

Additive manufacturing of SiC-Sialon refractory with complex geometries was achieved using direct ink writing processes, followed by pressure less sintering under nitrogen. The effects of particle size of SiC powders, solid content of slurries and additives on the rheology, thixotropy and viscoelasticity of ceramic slurries were investigated. The optimal slurry with a high solid content was composed of 81 wt% SiC (3.5 µm+0.65 µm), Al2O3 and SiO2 powders, 0.2 wt% dispersant, and 2.8 wt% binder. Furthermore, the accuracy of the structure of specimens was improved via adjustment of the printing parameters, including nozzle size, extrusion pressure, and layer height. The …


Ultrafast Stiffening Of Concentrated Thermoresponsive Mineral Suspensions, Sharu Bhagavathi Kandy, Iman Mehdipour, Narayanan Neithalath, Aditya Kumar, Mathieu Bauchy, Edward Garboczi, Samanvaya Srivastava, Torben Gaedt, Gaurav Sant Sep 2022

Ultrafast Stiffening Of Concentrated Thermoresponsive Mineral Suspensions, Sharu Bhagavathi Kandy, Iman Mehdipour, Narayanan Neithalath, Aditya Kumar, Mathieu Bauchy, Edward Garboczi, Samanvaya Srivastava, Torben Gaedt, Gaurav Sant

Materials Science and Engineering Faculty Research & Creative Works

Extrusion-based 3D printing with rapidly hardening polymeric materials is capable of building almost any conceivable structure. However, concrete, one of the most widely used materials for large-scale structural components, is generally based on inorganic binder materials like Portland cement. Unlike polymeric materials, a lack of precise control of the extent and rate of solidification of cement-based suspensions is a major issue that affects the ability to 3D-print geometrically complex structures. Here, we demonstrate a novel method for controllable-rapid solidification of concentrated mineral suspensions that contain a polymer binder system based on epoxy and thiol precursors as well as one or …