Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Journal of Electrochemistry

2016

Photoelectrochemistry

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Theoretical Study Of Photoelectrochemical Reactions And Ec-Sers On Spr Metallic Electrodes Of Silver And Gold, Yuan-Fei Wu, Ran Pang, Meng Zhang, Jian-Zhang Zhou, Bin Ren, Zhong-Qun Tian, De-Yin Wu Aug 2016

Theoretical Study Of Photoelectrochemical Reactions And Ec-Sers On Spr Metallic Electrodes Of Silver And Gold, Yuan-Fei Wu, Ran Pang, Meng Zhang, Jian-Zhang Zhou, Bin Ren, Zhong-Qun Tian, De-Yin Wu

Journal of Electrochemistry

At present photoelectrochemistry has received much concern back to nanostructures of noble metals from semiconductor electrodes. This is due to the surface plasmon resonance (SPR) effect of metallic nanostructures, which can effectively convert the far-field light to the near-field light and concentrate the photonic energy to the local surface area with high energy density. Thus, the different enhancement mechanisms, such as the local optical field enhancement, the formation of light generated hot carriers (hot electron-hole pairs), or the photothermal effect, have been proposed in literatures. On the basis of the SPR enhancement effect, the surface-enhanced Raman spectroscopy (SERS) can be …


Preparations And Photoelectrochemical Properties Of Phosphate Modified Rgo-Biobr Nanocomposites, Shuang-Ying Chen, Zhi-Jun Li, Xu-Liang Zhang, Kang Hu, Rui Yan, Li-Qiang Jing Aug 2016

Preparations And Photoelectrochemical Properties Of Phosphate Modified Rgo-Biobr Nanocomposites, Shuang-Ying Chen, Zhi-Jun Li, Xu-Liang Zhang, Kang Hu, Rui Yan, Li-Qiang Jing

Journal of Electrochemistry

The RGO-BiOBr nanocomposites have been successfully synthesized by a hydrothermal process, and then modified with phosphorous acids. The photoelectrochemical properties of the fabricated RGO-BiOBr nanocomposite films were studied. The results indicate that the photocurrent densities of RGO-BiOBr were much larger compared with those of the bare BiOBr, and interestingly, the photocurrent densities were further improved after phosphate modification. Based on the analyses of the produced hydroxyl radical amounts, the enhanced photocurrent densities could be attributed to the introduction of RGO and to the formed negative fields of modified phosphate groups, which are favorable for electrons to be transferred and for …