Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Joshua M. Pearce

Open source hardware

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Reprapable Recyclebot: Open Source 3-D Printable Extruder For Converting Plastic To 3-D Printing Filament, Aubrey Woern, Joseph Mccaslin, Adam Pringle, Joshua M. Pearce Mar 2019

Reprapable Recyclebot: Open Source 3-D Printable Extruder For Converting Plastic To 3-D Printing Filament, Aubrey Woern, Joseph Mccaslin, Adam Pringle, Joshua M. Pearce

Joshua M. Pearce

In order to assist researchers explore the full potential of distributed recycling of post-consumer polymer waste, this article describes a recyclebot, which is a waste plastic extruder capable of making commercial quality 3-D printing filament. The device design takes advantage of both the open source hardware methodology and the paradigm developed by the open source self-replicating rapid prototyper (RepRap) 3-D printer community. Specifically, this paper describes the design, fabrication and operation of a RepRapable Recyclebot, which refers to the Recyclebot’s ability to provide the filament needed to largely replicate the parts for the Recyclebot on any type of RepRap 3-D …


Open Source 3-D Printed Nutating Mixer, Dhwani K. Trivedi, Joshua M. Pearce Mar 2018

Open Source 3-D Printed Nutating Mixer, Dhwani K. Trivedi, Joshua M. Pearce

Joshua M. Pearce

As the open source development of additive manufacturing has led to low-cost desktop three-dimensional (3-D) printing, a number of scientists throughout the world have begun to share digital designs of free and open source scientific hardware. Open source scientific hardware enables custom experimentation, laboratory control, rapid upgrading, transparent maintenance, and lower costs in general. To aid in this trend, this study describes the development, design, assembly, and operation of a 3-D printable open source desktop nutating mixer, which provides a fixed 20° platform tilt angle for a gentle three-dimensional (gyrating) agitation of chemical or biological samples (e.g., DNA or blood …


Open-Source Automated Mapping Four-Point Probe, Handy Chandra, Spencer W. Allen, Shane W. Oberloier, Nupur Bihari, Jephias Gwamuri, Joshua M. Pearce May 2017

Open-Source Automated Mapping Four-Point Probe, Handy Chandra, Spencer W. Allen, Shane W. Oberloier, Nupur Bihari, Jephias Gwamuri, Joshua M. Pearce

Joshua M. Pearce

Scientists have begun using self-replicating rapid prototyper (RepRap) 3-D printers to manufacture open source digital designs of scientific equipment. This approach is refined here to develop a novel instrument capable of performing automated large-area four-point probe measurements. The designs for conversion of a RepRap 3-D printer to a 2-D open source four-point probe (OS4PP) measurement device are detailed for the mechanical and electrical systems. Free and open source software and firmware are developed to operate the tool. The OS4PP was validated against a wide range of discrete resistors and indium tin oxide (ITO) samples of different thicknesses both pre- and …


Emerging Business Models For Open Source Hardware, Joshua M. Pearce May 2017

Emerging Business Models For Open Source Hardware, Joshua M. Pearce

Joshua M. Pearce

The rise of Free and Open Source models for software development has catalyzed the growth of Free and Open Source hardware (also known as “Libre Hardware”). Libre Hardware is gaining significant traction in the scientific hardware community, where there is evidence that open development creates both technically superior and far less expensive scientific equipment than proprietary models. In this article, the evidence is reviewed and a collection of examples of business models is developed to service scientists who have the option to manufacture their own equipment using Open Source designs. Profitable Libre Hardware business models are reviewed, which includes kit, …