Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Faculty of Engineering and Information Sciences - Papers: Part A

2016

Mechanical

Articles 1 - 10 of 10

Full-Text Articles in Engineering

Effect Of Deformation On Microstructure And Mechanical Properties Of Dual Phase Steel Produced Via Strip Casting Simulation, Zhiping Xiong, Andrii Kostryzhev, Nicole Stanford, Elena V. Pereloma Jan 2016

Effect Of Deformation On Microstructure And Mechanical Properties Of Dual Phase Steel Produced Via Strip Casting Simulation, Zhiping Xiong, Andrii Kostryzhev, Nicole Stanford, Elena V. Pereloma

Faculty of Engineering and Information Sciences - Papers: Part A

The strip casting is a recently appeared technology with a potential to significantly reduce energy consumption in steel production, compared to hot rolling and cold rolling. However, the quantitative dependences of the steel microstructure and mechanical properties on strip casting parameters are unknown and require investigation. In the present work we studied the effects of strain and interrupted cooling temperature on microstructure and mechanical properties in conventional dual phase steel (0.08C-0.81Si-1.47Mn-0.03Al wt%). The strip casting process was simulated using a Gleeble 3500 thermo-mechanical simulator. The steel microstructures were studied using optical, scanning and transmission electron microscopy. Mechanical properties were measured …


Mechanical Recoverability And Damage Process Of Ionic-Covalent Paam-Alginate Hybrid Hydrogels, Hai Xin, Hugh Ralph Brown, Sina Naficy, Geoffrey M. Spinks Jan 2016

Mechanical Recoverability And Damage Process Of Ionic-Covalent Paam-Alginate Hybrid Hydrogels, Hai Xin, Hugh Ralph Brown, Sina Naficy, Geoffrey M. Spinks

Faculty of Engineering and Information Sciences - Papers: Part A

Hydrogels consisting of interpenetrating networks of ionically and covalently crosslinked polymers showed high toughness and mechanical recoverability as a result of the dissociation and re-formation of ionic crosslinks. The present investigation aimed to provide a quantitative study on the mechanical recoverability and damage process of an example hybrid gel of calcium crosslinked alginate and covalently crosslinked polyacrylamide. Three series of load/unload tests were performed sequentially with the mechanical properties of the gel fully retrieved between the 2nd and 3rd load/unload series while only the partial recovery of mechanical properties was evident from the 1st to 2nd series. The load/unload curves …


Mechanical Properties And Tribological Behavior Of Aluminum Matrix Composites Reinforced With In-Situ Alb2 Particles, Linlin Yuan, Jingtao Han, Jing Liu, Zhengyi Jiang Jan 2016

Mechanical Properties And Tribological Behavior Of Aluminum Matrix Composites Reinforced With In-Situ Alb2 Particles, Linlin Yuan, Jingtao Han, Jing Liu, Zhengyi Jiang

Faculty of Engineering and Information Sciences - Papers: Part A

Aluminum matrix composites (AMCs) reinforced with in-situ AlB2 particles have been fabricated using a combination of powder metallurgy, hot rolling and solution treatment. The effects of boron content (7 and 12 wt%), hot rolling and heat treatment parameters on the microstructures and mechanical properties of the composites were investigated by means of scanning electron microscopy (SEM), tensile test and micro-hardness measurements. The friction coefficient, wear behavior and scratch morphology of the AMCs and pure aluminum were also studied using scratch tests. The hardness and wear properties are higher in a case of composites when compared to unreinforced matrix material.


Rapid Transformation Of Hexagonal To Cubic Silicon Carbide (Sic) By Electric Discharge Assisted Mechanical Milling, Iis Siti Aisyah, Monika Wyszomirska, Andrzej Calka, David Wexler Jan 2016

Rapid Transformation Of Hexagonal To Cubic Silicon Carbide (Sic) By Electric Discharge Assisted Mechanical Milling, Iis Siti Aisyah, Monika Wyszomirska, Andrzej Calka, David Wexler

Faculty of Engineering and Information Sciences - Papers: Part A

Silicon carbide powder was successfully transformed from hexagonal SiC into cubic SiC using the electric discharge assisted mechanical milling (EDAMM) method. The milling process was conducted in nitrogen plasma at atmospheric pressure. The effects of pulsed alternating current (AC) and direct current (DC) discharge on product formation were investigated. Products were characterized by X-ray diffractometry, scanning electron microscopy, transmission electron microscopy and nanohardness. It was found that hexagonal SiC can be transformed into cubic SiC under EDAMM processing, near complete transformation occurring within 5 min when applying AC mode electrical pulses, and within 10 min when applying DC mode discharges.


Microstructures And Mechanical Properties Of Trip Steel Produced By Strip Casting Simulated In The Laboratory, Zhiping Xiong, Andrii Kostryzhev, Ahmed A. Saleh, Liang Chen, Elena V. Pereloma Jan 2016

Microstructures And Mechanical Properties Of Trip Steel Produced By Strip Casting Simulated In The Laboratory, Zhiping Xiong, Andrii Kostryzhev, Ahmed A. Saleh, Liang Chen, Elena V. Pereloma

Faculty of Engineering and Information Sciences - Papers: Part A

Conventional transformation induced plasticity (TRIP) steel (0.17C-1.52Si-1.61Mn-0.03Al, wt%) was produced via strip casting technology simulated in the laboratory. Effects of holding temperature, holding time and cooling rate on ferrite formation were studied via analysis of the continuous cooling transformation diagram obtained here. A typical microstructure for conventional TRIP steels consisting of ~ 0.55 fraction of polygonal ferrite with bainite, retained austenite and martensite was obtained. However, coarse prior austenite grain size of ~80 μm led to large polygonal ferrite grain size of ~17 μm, coarse second phase regions of ~21 μm size, small amount of retained austenite (0.02-0.045) and the …


Special Rolling Techniques For Improvement Of Mechanical Properties Of Ultrafine-Grained Metal Sheets: A Review, Hai Liang Yu, Cheng Lu, Anh Kiet Tieu, Hui Jun Li, Ajit R. Godbole, Shi-Hong Zhang Jan 2016

Special Rolling Techniques For Improvement Of Mechanical Properties Of Ultrafine-Grained Metal Sheets: A Review, Hai Liang Yu, Cheng Lu, Anh Kiet Tieu, Hui Jun Li, Ajit R. Godbole, Shi-Hong Zhang

Faculty of Engineering and Information Sciences - Papers: Part A

Interest in ultrafine-grained (UFG) materials has grown rapidly in past 20 years. This review focuses on the application of special rolling techniques for improvement of the mechanical properties of UFG metal sheets. These techniques include asymmetric rolling, cryorolling, asymmetric cryorolling, cross-accumulative roll bonding, and skin-pass rolling. The techniques also include a combination of processes such as equal channel angular press and subsequent rolling, combined high-pressure torsion and subsequent rolling, as well as combined accumulative roll bonding and subsequent asymmetric rolling. We also discuss the main mechanisms leading to improvement in the ductility of UFG materials related to the special rolling …


Enhanced Mechanical Properties Of Arb-Processed Aluminum Alloy 6061 Sheets By Subsequent Asymmetric Cryorolling And Ageing, Hai Liang Yu, Lihong Su, Cheng Lu, Anh Kiet Tieu, Hui Jun Li, Jintao Li, Ajit R. Godbole, Charlie Kong Jan 2016

Enhanced Mechanical Properties Of Arb-Processed Aluminum Alloy 6061 Sheets By Subsequent Asymmetric Cryorolling And Ageing, Hai Liang Yu, Lihong Su, Cheng Lu, Anh Kiet Tieu, Hui Jun Li, Jintao Li, Ajit R. Godbole, Charlie Kong

Faculty of Engineering and Information Sciences - Papers: Part A

Grain size and precipitations affect the strength and ductility of ultrafine-grained materials. In this study, aluminum alloy 6061 sheets were fabricated using the accumulative roll bonding (ARB) technique. The ARB-processed sheets were subsequently subjected to cryorolling and asymmetric cryorolling. The sheets were further aged at 100 °C for 48 h. Mechanical tests show that a combination of asymmetric cryorolling and ageing results in significant improvement in both the ductility and the strength of the ARB-processed sheets. The microstructures of the sheets at different stages of the process were also analyzed using optical microscopy, scanning electron microscopy, transmission electron microscopy and …


Microstructure And Mechanical Properties Of Strip Cast Trip Steel Subjected To Thermo-Mechanical Simulation, Zhiping Xiong, Andrii Kostryzhev, Liang Chen, Elena V. Pereloma Jan 2016

Microstructure And Mechanical Properties Of Strip Cast Trip Steel Subjected To Thermo-Mechanical Simulation, Zhiping Xiong, Andrii Kostryzhev, Liang Chen, Elena V. Pereloma

Faculty of Engineering and Information Sciences - Papers: Part A

Instead of hot rolling and cold rolling followed by annealing, strip casting is a more economic and environmentally friendly way to produce transformation-induced plasticity (TRIP) steels. According to industrial practice of strip casting, rapid cooling in this work was achieved using a dip tester, and a Gleeble 3500 thermo-mechanical simulator was used to carry out the processing route. A typical microstructure of TRIP steels, which included ~0.55 fraction of polygonal ferrite with bainite, retained austenite and martensite, was obtained. The effects of deformation (0.41 reduction) above non-recrystallisation temperature, isothermal bainite transformation temperature and the size of second phase region on …


Microscale Mechanical Behaviour Of Ultra-Fine-Grained Materials Processed By High-Pressure Torsion, Klaus-Dieter Liss Jan 2016

Microscale Mechanical Behaviour Of Ultra-Fine-Grained Materials Processed By High-Pressure Torsion, Klaus-Dieter Liss

Faculty of Engineering and Information Sciences - Papers: Part A

A special networking seminar was given by Associate Professor Megumi Kawasaki from Hanyang University, South Korea. The seminar covered microscale mechanical behaviour of ultrafine- grained materials processed by high-pressure torsion, and was co-organised by the School of Mechanical, Materials and Mechatronic Engineering (MMME), University of Wollongong and Materials Australia NSW. The event was hosted on 20 September 2016 at a sponsored networking tea by MMME.


Mechanical Fatigue Performance Of Pcl-Chondroprogenitor Constructs After Cell Culture Under Bioreactor Mechanical Stimulus, J A. Panadero, Vitor Sencadas, Sonia C.M. Silva, Clarisse Ribeiro, Vítor Correia, F M. Gama, J L. Gomez Ribelles, Senentxu Lanceros-Méndez Jan 2016

Mechanical Fatigue Performance Of Pcl-Chondroprogenitor Constructs After Cell Culture Under Bioreactor Mechanical Stimulus, J A. Panadero, Vitor Sencadas, Sonia C.M. Silva, Clarisse Ribeiro, Vítor Correia, F M. Gama, J L. Gomez Ribelles, Senentxu Lanceros-Méndez

Faculty of Engineering and Information Sciences - Papers: Part A

In tissue engineering of cartilage, polymeric scaffolds are implanted in the damaged tissue and subjected to repeated compression loading cycles. The possibility of failure due to mechanical fatigue has not been properly addressed in these scaffolds. Nevertheless, the macroporous scaffold is susceptible to failure after repeated loading- unloading cycles. This is related to inherent discontinuities in the material due to the micropore structure of the macropore walls that act as stress concentration points. In this work, chondrogenic precursor cells have been seeded in poly-e-caprolactone (PCL) scaffolds with fibrin and some were submitted to free swelling culture and others to cyclic …