Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Engineering

The Design And Validation Of A Uav Propeller Intended For Extremely Low Reynolds Number Environments, Benjamin Hebert Dec 2020

The Design And Validation Of A Uav Propeller Intended For Extremely Low Reynolds Number Environments, Benjamin Hebert

Electronic Theses and Dissertations

Mars exploration and UAV development have both advanced significantly over the past century, and are now being considered in tandem. Currently needed are UAV propellers that can operate in the Martian atmosphere. Flow will be in the range of Re < 20,000, creating extreme conditions not typically examined. A Blade Element Momentum Theory (BEMT) algorithm is developed using a variety of corrections designed specifically for low Reynolds number and rotational flows. Due to both the simplicity of the basic BEMT formulation, corrections are easy to put in place and often necessary to achieve accurate estimates. Aerodynamic coefficients are determined from XFOIL code, and have questionable accuracy in this regime. To account for this, a correction model is developed by comparing XFOIL results to experimental results of airfoils at low Re. This is all tested against a previous low Re propeller experiment. The results of this comparison are used to adjust the values in the correction, to produce more accurate results for theoretical design.

From here, a design philosophy for the propeller is developed using established methods and previous experimental data. High thrust is prioritized, with efficiency being a secondary concern. A hard mach limit of 0.7 is set to avoid major drag penalties, limiting the usable ranges of RPM and radius. Airfoil designs are then examined, based on previous designs, theoretical intuition, and …


Uav 6dof Simulation And Kalman Filter For Localizing Radioactive Sources, John G. Goulet May 2020

Uav 6dof Simulation And Kalman Filter For Localizing Radioactive Sources, John G. Goulet

Electronic Theses and Dissertations

Unmanned Aerial Vehicles (UAVs) expand the available mission-space for a wide range of budgets. Using MATLAB, this project has developed a six degree of freedom (6DOF) simulation of UAV flight, an Extended Kalman Filter (EKF), and an algorithm for localizing radioactive sources using low-cost hardware. The EKF uses simulated low-cost instruments in an effort to estimate the UAV state throughout simulated flight.

The 6DOF simulates aerodynamics, physics, and controls throughout the flight and provides outputs for each time step. Additionally, the 6DOF simulation offers the ability to control UAV flight via preset waypoints or in realtime via keyboard input.

Using …


Optimization And Simulation Models To Improve Access To Organ Transplantation In The United States., Fatemeh Karami May 2020

Optimization And Simulation Models To Improve Access To Organ Transplantation In The United States., Fatemeh Karami

Electronic Theses and Dissertations

Organ allocation in the U.S. is administrated by the United Network of Organ Sharing (UNOS). UNOS’s mission is to ensure fair and equitable allocation of organs as stated in the Code of Federal Regulations, which reads "neither place of residence nor place of listing shall be a major determinant of access to transplant". Despite the regulations, there has been endless controversy surrounding the disparity in access to organ transplants. In this context, the primary research goal in this dissertation was to reduce geographic disparity in access to transplants in the U.S., with a focus on heart and kidney transplants. To …


Impact Of Magnetocaloric Material Properties On Performance Of A Magnetocaloric Heat Pump., Michael G. Schroeder May 2020

Impact Of Magnetocaloric Material Properties On Performance Of A Magnetocaloric Heat Pump., Michael G. Schroeder

Electronic Theses and Dissertations

In the field of magnetocaloric heat pumps much research has been performed around machine design and theoretical machines, but little has been researched around practical problems such as variability in material properties. The present work defines a simulation tool that has been proven with experimental data. Magnetocaloric material cascades were statistically analyzed and parameterized, such that they could be recreated parametrically using a split Lorentz function with normally distributed parameters. Correlated curve-defining values with standard deviations were used as input into the simulation tool to determine the effect of variation on cooling heat pump performance for a household refrigerator application. …