Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Electrical Engineering

Theses/Dissertations

Buck converter

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Spread Spectrum Buck Converter, Summer Elise Rutherford, Kyle Brandon Halloran, Brian Taylor Arbiv Jun 2019

Spread Spectrum Buck Converter, Summer Elise Rutherford, Kyle Brandon Halloran, Brian Taylor Arbiv

Electrical Engineering

Electromagnetic interference (EMI) is an issue prevalent to DC-DC converters. When a system doesn’t effectively filter out external noise or signals, these signals can cause disturbances to the system at large. The switching technology of DC-DC converters (PWM in particular), lends the system susceptible to EMI because there is a prevalent peaks at the switching frequency, meaning any external signals will not be effectively attenuated at this frequency. This can cause significant issues at the input bus of the DC-DC converters because this bus is likely the input of a multitude of devices; the EMI susceptibility caused by switching technology …


Buck Converter, Bowen Liu Dec 2014

Buck Converter, Bowen Liu

Electrical Engineering

The recent sustainable energy growth triggered a huge power electronics demand, specifically related to power conversion. My senior project is a design of a buck converter which steps down the voltage from photovoltaic cells ranging from 5 to 40V to a rechargeable battery with 5V. This converter has a high enough power efficiency to effectively convert the energy harnessed from PV panels.


Design Improvement For The Smart Dc Wall Plug, Cory Yee, Haoyan Huang Jun 2014

Design Improvement For The Smart Dc Wall Plug, Cory Yee, Haoyan Huang

Electrical Engineering

The DC smart wall plug is a subsystem within the Cal Poly DC House Project. The previous version faces challenges supplying DC voltage to meet household appliances’ nominal values. Specifically, it can only output the minimum required voltage for DC appliances to operate, resulting in unwanted power loss. In addition, the maximum output voltage is rated at 15V, which is insufficient to power most DC appliances. This design improvement project incorporates NFC technology as a solution to overcome the power loss and a new buck converter configuration to increase the output voltage range. Additionally, the new design introduces short-circuit and …