Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Assessment Of Cu(In, Ga)Se₂ Solar Cells Degradation Due To Water Ingress Effect On The Cds Buffer Layer, Deewakar Poudel, Benjamin Belfore, Shankar Karki, Grace Rajan, Sina Soltanmohammad, Angus Rockett, Sylvain Marsillac Jan 2021

Assessment Of Cu(In, Ga)Se₂ Solar Cells Degradation Due To Water Ingress Effect On The Cds Buffer Layer, Deewakar Poudel, Benjamin Belfore, Shankar Karki, Grace Rajan, Sina Soltanmohammad, Angus Rockett, Sylvain Marsillac

Electrical & Computer Engineering Faculty Publications

The effect of water ingress on the surface of the buffer layer of a Cu(In, Ga)Se2 (CIGS) solar cell was studied. Such degradation can occur either during the fabrication process, if it involves a chemical bath as is often the case for CdS, or while the modules are in the field and encapsulants degrade. To simulate the impact of this moisture ingress, devices with a structure sodalime glass/Mo/CIGS/CdS were immersed in deionized water. The thin films were then analyzed both pre and post water soaking. Dynamic secondary ion mass spectroscopy (SIMS) was performed on completed devices to analyze impurity diffusion …


Degradation Mechanism Due To Water Ingress Effect On The Top Contact Of Cu(In,Ga)Se2 Solar Cells, Deewakar Poudel, Shankar Karki, Benjamin Belfore, Grace Rajan, Sushma Swaraj Atluri, Sina Soltanmohammad, Angus Rockett, Sylvain Marsillac Jan 2020

Degradation Mechanism Due To Water Ingress Effect On The Top Contact Of Cu(In,Ga)Se2 Solar Cells, Deewakar Poudel, Shankar Karki, Benjamin Belfore, Grace Rajan, Sushma Swaraj Atluri, Sina Soltanmohammad, Angus Rockett, Sylvain Marsillac

Electrical & Computer Engineering Faculty Publications

The impact of moisture ingress on the surface of copper indium gallium diselenide (CIGS) solar cells was studied. While industry-scale modules are encapsulated in specialized polymers and glass, over time, the glass can break and the encapsulant can degrade. During such conditions, water can potentially degrade the interior layers and decrease performance. The first layer the water will come in contact with is the transparent conductive oxide (TCO) layer. To simulate the impact of this moisture ingress, complete devices were immersed in deionized water. To identify the potential sources of degradation, a common window layer for CIGS devices—a bilayer of …