Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Engineering

Damage Control Measures In Composites: Focus On Damage Tolerance Of Aerospace Structures, Kais Jribi Apr 2024

Damage Control Measures In Composites: Focus On Damage Tolerance Of Aerospace Structures, Kais Jribi

Doctoral Dissertations and Master's Theses

Barely Visible Impact Damage (BVID) in composite materials presents a stealthy yet significant risk to structural integrity, particularly challenging due to its elusive nature. The approach adopted here diverges from traditional methodologies, focusing on the novel application of Digital Image Correlation (DIC) to map surface area changes during in-situ Compression After Impact (CAI) tests. This technique allows for an in-depth analysis of planar strains along the x and y axes, shedding light on the material's behavior under stress.

A pivotal advancement lies in developing a method for precisely identifying when BVID-induced delamination recommences. By meticulously analyzing strain pattern deviations along …


Interfacial Thermomechanical Behavior Of Hybrid Carbon Fibers, Sriraj Srihari Oct 2023

Interfacial Thermomechanical Behavior Of Hybrid Carbon Fibers, Sriraj Srihari

Doctoral Dissertations and Master's Theses

The carbon fiber/epoxy interface is of great importance in composite design due to its load transfer mechanisms from the weak epoxy to the stronger fiber. Improving the strength of the interface reduces the risk of failure at the interface and improves the load transfer to the fiber. In this study, two types of nano-species ZnO nanowires and nickel-based metal organic frameworks were grown on carbon fibers to improve the interfaces. The interfacial mechanics of the enhanced fibers are evaluated using nanoindentation studies. Composite samples with Aeropoxy matrix and vertically aligned fibers are fabricated for this purpose. A Bruker TI-980 TriboIndenter …


Experimental Characterization Of Additively Manufactured Multi-Feather Wingtip Devices, Patricio Garzon Jul 2022

Experimental Characterization Of Additively Manufactured Multi-Feather Wingtip Devices, Patricio Garzon

Doctoral Dissertations and Master's Theses

Soaring birds have evolved to fly for long periods of time without flapping their wings. Inspired by the flight of these birds, the proposed thesis presents an experimental investigation focused on wingtip devices designed based on biomimicry. The overarching engineering objective was to reduce the induced drag as a means to improve the fuel efficiency via these experimental wingtips. An associated secondary objective was to establish a method for manufacturing complex structures suitable for wing tunnel testing. A manufacturing technique that involved using composite weaves to reinforce additively manufactured structures was developed. This technique has the potential to reduce manufacturing …


Analysis Of After Impact Characteristics And Structural Optimization Of Cfrp Composite Plate, Zhennan He Dec 2020

Analysis Of After Impact Characteristics And Structural Optimization Of Cfrp Composite Plate, Zhennan He

Doctoral Dissertations and Master's Theses

Low-velocity impact (LVI) on composites may cause Barely Visible Impact Damage (BVID), which is one of the most common damage types and may result in a decrease in strength of the composite. The objectives of this research were (a) to identify the characteristics of a carbon/epoxy composite plate after low-velocity impact, (b) to create a validated model to simulate the impact process and progressive failure, and (c) to perform sizing and shape optimization of the laminate for improving the damage resistance of the plate. As a part of this thesis, composite plates were fabricated using carbon fiber reinforced polymer (CFRP) …


Topology Optimization And Analysis Of Thermal And Mechanical Metamaterials, Lee Alacoque Jul 2020

Topology Optimization And Analysis Of Thermal And Mechanical Metamaterials, Lee Alacoque

Doctoral Dissertations and Master's Theses

To take advantage of multi-material additive manufacturing technology using mixtures of metal alloys, a topology optimization framework is developed to synthesize high-strength spatially periodic metamaterials possessing unique thermoelastic properties. A thermal and mechanical stress analysis formulation based on homogenization theory is developed and is used in a regional scaled aggregation stress constraint method, and a method of worst-case stress minimization is also included to efficiently address load uncertainty. It is shown that the two stress-based techniques lead to thermal expansion properties that are highly sensitive to small changes in material distribution and composition. To resolve this issue, a uniform manufacturing …