Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Engineering

Modeling Dewetting, Demixing, And Thermal Effects In Nanoscale Metal Films, Ryan Howard Allaire Aug 2021

Modeling Dewetting, Demixing, And Thermal Effects In Nanoscale Metal Films, Ryan Howard Allaire

Dissertations

Thin film dynamics, particularly on the nanoscale, is a topic of extensive interest. The process by which thin liquids evolve is far from trivial and can lead to dewetting and drop formation. Understanding this process involves not only resolving the fluid mechanical aspects of the problem, but also requires the coupling of other physical processes, including liquid-solid interactions, thermal transport, and dependence of material parameters on temperature and material composition. The focus of this dissertation is on the mathematical modeling and simulation of nanoscale liquid metal films, which are deposited on thermally conductive substrates, liquefied by laser heating, and subsequently …


Electric Field Induced Self-Assembly Of Mesoscale Structured Materials And Smart Fluids, Suchandra Das May 2021

Electric Field Induced Self-Assembly Of Mesoscale Structured Materials And Smart Fluids, Suchandra Das

Dissertations

This dissertation aims to study the forces that drive self-assembly in binary mixtures of particles suspended in liquids and on fluid-liquid interfaces when they are subjected to a uniform electric or magnetic field. Three fluid-particle systems are investigated experimentally and theoretically : (i) Suspensions of dielectric particles in dielectric liquids; (ii) Suspensions of ferromagnetic and diamagnetic particles in ferrofluids; and (iii) Dielectric particles on dielectric fluid-liquid interfaces. The results of these studies are then used to estimate the parameter values needed to assemble materials with desired mesoscale microstructures.

The first fluid-particle system studied is an electrorheological (ER) fluid formed using …


Studies Of Two-Phase Flow With Soluble Surfactant, Ryan Peter Atwater Aug 2020

Studies Of Two-Phase Flow With Soluble Surfactant, Ryan Peter Atwater

Dissertations

Numerical methods are developed for accurate solution of two-phase flow in the zero Reynolds number limit of Stokes flow, when surfactant is present on a drop interface and in its bulk phase interior. The methods are designed to achieve high accuracy when the bulk Péclet number is large, or equivalently when the bulk phase surfactant has small diffusivity

In the limit of infinite bulk Péclet number the advection-diffusion equation that governs evolution of surfactant concentration in the bulk is singularly perturbed, indicating a separation of spatial scales. A hybrid numerical method based on a leading order asymptotic reduction in this …


Distribution Of Velocities And Velocity Gradients In Mixing And Flocculation Vessels : Comparison Between Ldv Data And Cfd Predictions, Changgen Luo May 1997

Distribution Of Velocities And Velocity Gradients In Mixing And Flocculation Vessels : Comparison Between Ldv Data And Cfd Predictions, Changgen Luo

Dissertations

Flocculation is an operation of significant industrial relevance commonly encountered in many processes, including water and wastewater treatment. The physico-chemical phenomena of this process is strongly affected by the magnitude of the velocity gradients generated, typically through agitation, in rapid mix devices and flocculation vessels.

In this work the fluid dynamic characteristics of mechanically agitated systems, namely three different types of stirred tanks, which can be used as flocculation vessels, were studied. Both the mean and fluctuating velocities in all three directions were measured by using a Laser-Doppler Velocimeter (LDV). The velocity distribution, fluctuating velocities, power consumption and local velocity …


Vapor-Liquid Phase Equilibria Of Nonideal Fluids With A Ge-Eos Model, Socrates Ioannidis Oct 1996

Vapor-Liquid Phase Equilibria Of Nonideal Fluids With A Ge-Eos Model, Socrates Ioannidis

Dissertations

This study dealt with the prediction and correlation of vapor-liquid equilibria behavior of nonideal fluids. The thermodynamic formalism of the GE-EoS models, which combines the two traditional methods γ-Φ and Φ-Φ used so far for low and high pressure phase equilibria correlations respectively, has been combined with the 1FGE model, based on one-fluid theory, to produce a more consistent approach to the phase equilibrium problem.

In the first part of our study we examine the predictive abilities of our model for vapor-liquid equilibria of highly nonideal fluids. The results establish the fact that the Huron-Vidal mixing rule …