Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Boise State University Theses and Dissertations

2020

Discipline
Keyword

Articles 1 - 30 of 33

Full-Text Articles in Engineering

Designing And Evaluating Of Mimo Systems For Millimeter-Wave Communications, Mojtaba Ahmadi Almasi Dec 2020

Designing And Evaluating Of Mimo Systems For Millimeter-Wave Communications, Mojtaba Ahmadi Almasi

Boise State University Theses and Dissertations

The fifth generation (5G) of wireless communications will integrate all existing technologies while bringing its own to the system. Amongst these technologies, millimeter-wave (mmWave) is emerging as a promising solution for 5G systems. However, to fully harness the potential of mmWave communications, obstacles such as severe path loss, channel sparsity, and hardware complexity should be overcome. The existing cost-effective systems can considerably reduce the hardware complexity and partially severe path loss, while channel sparsity still remains a main problem. Other factors such as transmission reliability and coverage area should be considered in 5G mmWave communications. Non-orthogonal multiple access (NOMA) is …


In Vitro Method To Quantify And Visualize Volumetric Wear In Meniscus Subjected To Joint Loading Using A 3d Optical Scanner, Kate J. Benfield Dec 2020

In Vitro Method To Quantify And Visualize Volumetric Wear In Meniscus Subjected To Joint Loading Using A 3d Optical Scanner, Kate J. Benfield

Boise State University Theses and Dissertations

The menisci are fibrocartilaginous soft tissues that act to absorb and distribute load across the surface of the knee joint. As a result of mechanical wear and large repetitive loading, meniscus tissue can begin to breakdown, or degenerate. Meniscus degeneration increases the risk of tearing, weakened tissue integrity, and the progression of osteoarthritis. Therefore, it is imperative to understand the wear behavior of whole human meniscus to identify conditions that may significantly increase the risk of degeneration.

The objective of this study is to develop and validate an in vitro methodology for characterizing volumetric wear behavior in whole human meniscus …


Defect Evolution In High-Temperature Irradiated Nuclear Graphite, Steve Johns Dec 2020

Defect Evolution In High-Temperature Irradiated Nuclear Graphite, Steve Johns

Boise State University Theses and Dissertations

Graphite has historically been used as a moderator material in nuclear reactor designs dating back to the first man-made nuclear reactor to achieve criticality (Chicago Pile 1) in 1942. Additionally, graphite is a candidate material for use in the future envisioned next-generation nuclear reactors (Gen IV); specifically, the molten-salt-cooled (MSR) and very-high-temperature reactor (VHTR) concepts. Gen IV reactor concepts will introduce material challenges as temperature regimes and reactor lifetimes are anticipated to far exceed those of earlier reactors. Irradiation-induced defect evolution is a fundamental response in nuclear graphite subjected to irradiation. These defects directly influence the many property changes of …


Direct Solar Absorption Nanoparticle Doped Membranes For A Hybrid Membrane Distillation And Photovoltaic Cell, Alejandro Espejo Sanchez Dec 2020

Direct Solar Absorption Nanoparticle Doped Membranes For A Hybrid Membrane Distillation And Photovoltaic Cell, Alejandro Espejo Sanchez

Boise State University Theses and Dissertations

The growing demand for clean water supplies is driving the need for an innovative approach of water desalination. Developing a method for treating water with high salinities is possible with membrane distillation (MD). Additionally, MD is very attractive for pairing with solar energy due to the low temperature requirements. The integration of a membrane distillation system with a photovoltaic (PV) system will result in the co-production of electricity and clean water, thereby improving the economics of MD. Such a hybrid system will directly absorb thermal energy in the membrane for desalination while taking advantage of the spectrally selective nature of …


Heat Transfer Modeling And Optimization Of A Carbonized Microvascular Solar Receiver, Taylor Brown Dec 2020

Heat Transfer Modeling And Optimization Of A Carbonized Microvascular Solar Receiver, Taylor Brown

Boise State University Theses and Dissertations

Concentrating solar power is an emerging renewable energy source. The technology can collect and store thermal energy from the sun over long durations, generating electricity as needed at a later time. Current CSP systems are limited to a maximum operational temperature due to constraints of the working fluid, which limits the maximum possible efficiency of the system. One proposed pathway forward is to utilize a gas phase for the working fluid in the system such as supercritical carbon dioxide.

A composite gas phase modular receiver is being developed by researchers at Boise State University and the University of Tulsa. The …


Constitutive Modeling Of Force-Controlled Fatigue Testing In Human Meniscus Tissue, Bradley Scott Henderson Dec 2020

Constitutive Modeling Of Force-Controlled Fatigue Testing In Human Meniscus Tissue, Bradley Scott Henderson

Boise State University Theses and Dissertations

The meniscus is a wedge-shaped fibrocartilaginous tissue located between the femur and tibia that helps stabilize the knee and protect the underlying cartilage. There are 2.5 million reported knee injuries each year, making it the most injured joint in the human body. Nearly twenty percent of these injuries are due to a torn meniscus, leading to over half a million meniscus surgeries performed in the United States annually. Therefore, it is critical to understand the failure modes of meniscus tissue to prevent these debilitating injuries. A failure mode that accounts for one-third of all meniscus injuries is repeated exposure to …


Additive Manufacturing Of Graphene-Based Devices For Flexible Hybrid Electronics, Twinkle Pandhi Dec 2020

Additive Manufacturing Of Graphene-Based Devices For Flexible Hybrid Electronics, Twinkle Pandhi

Boise State University Theses and Dissertations

In this work, I investigate and enhance the fundamental sensing properties of printed electronic nanomaterials (e.g., graphene) in real-world environments while decreasing weight, cost, and power consumption. The dissertation addresses this issue with the following foci in mind: (1) developing a straightforward and repeatable process to synthesize graphene ink which is also compatible with Inkjet-printing (IJP) and Aerosol Jet printing (AJP). (2) Tuning additive manufacturing printing (IJP and AJP) parameters to establish a repeatable manufacturing process and print high performing (graphene-based) electrodes and interconnects, compatible with the underlying substrate. (3) Investigate power dissipation and electrical breakdown in AJP printed graphene …


In-Situ Fluid Injections To Achieve Bio-Stimulated Calcite Precipitation In Expansive Soils, Anish Pathak Dec 2020

In-Situ Fluid Injections To Achieve Bio-Stimulated Calcite Precipitation In Expansive Soils, Anish Pathak

Boise State University Theses and Dissertations

Expansive soils undergo vast changes in volume when subject to change in water contents and cause damages to infrastructures across the world. Traditional methods of tackling the problem of expansive soils using cement or lime are environmentally unfriendly and expensive. Microbial Induced Calcite Precipitation (MICP) is a new method which uses bacteria in the soil to precipitate CaCO3 (calcite) and improve the engineering properties of soils. Various laboratory studies have shown that this method can be applied successfully to treat expansive soils, but the field application of the method have barely been studied.

To study the applicability of MICP in …


Large Displacement J-Integral Double Cantilever Beam (Dcb) Test Method For Mode I Fracture Toughness, Joshua Gunderson Dec 2020

Large Displacement J-Integral Double Cantilever Beam (Dcb) Test Method For Mode I Fracture Toughness, Joshua Gunderson

Boise State University Theses and Dissertations

The J-integral is used to develop an alternative double cantilever beam (DCB) test method for the Mode I fracture toughness suitable for both small and large displacements. The current focus is the experimental determination of the Mode I interlaminar fracture toughness of composite materials, but the method is generally applicable to other similar tests and material systems, such as to the Mode I fracture toughness of adhesives. A series of five identical specimens are tested to compare the linear-elastic fracture mechanics method recommended by ASTM, which makes use of linear beam theory with root rotation, large displacement, and end …


A Resilience Metric For Modern Power Distribution Systems, Tyler Bennett Phillips Dec 2020

A Resilience Metric For Modern Power Distribution Systems, Tyler Bennett Phillips

Boise State University Theses and Dissertations

Modern society has become increasingly reliant on the functioning of critical infrastructure. It is considered so vital that its incapacitation or destruction would have debilitating effects on the global economy, national security, and public health and safety. The electrical power system is uniquely positioned, as it is essential for all other sectors of critical infrastructure to operate as intended. However, it is constantly at risk due to factors such as natural disasters, climate change, aging infrastructure, and cyber threats. Thus, ensuring the efficient and continuous supply of electricity is of utmost importance and the topic of this dissertation.

The work …


Novel Memristor Based True Random Number Generator, Scott Stoller Dec 2020

Novel Memristor Based True Random Number Generator, Scott Stoller

Boise State University Theses and Dissertations

Random numbers are an important, but often overlooked part of the modern computing environment. They are used everywhere around us for a variety of purposes, from simple decision making in video games such as a coin toss, to securing financial transactions and encrypting confidential communications. They are even useful for gambling and the lottery.

Random numbers are generated in many ways. Pseudo random number generators (PRNGs) generate numbers based on a formula. True random number generators (TRNGs) capture entropy from the environment to generate randomness. As our society and our devices become more connected in the digital world, it is …


Understanding Mesoscopic Chemo-Mechanical Distress And Mitigation Mechanisms Of Concrete Subject To Asr, Md Asif Rahman Dec 2020

Understanding Mesoscopic Chemo-Mechanical Distress And Mitigation Mechanisms Of Concrete Subject To Asr, Md Asif Rahman

Boise State University Theses and Dissertations

Alkali-silica reaction (ASR) is one of the common sources of concrete damage worldwide. The surrounding environment, namely, temperature and humidity greatly influence the alkali-silica reaction induced expansion. Global warming (GW) has caused frequent change in the climate and initiated extreme weather events in recent years. These extreme events anticipate random change in temperature and humidity, and convey potential threats to the concrete infrastructure. Moreover, external loading conditions also affect the service life of concrete. Thus, complex mechanisms of ASR under the impact of seasonal change and global warming require a precise quantitative assessment to guide the durable infrastructure materials design …


Decellularization Of Porcine Cartilage Promotes Chondrogenic Differentiation Of Human Chondrocytes, Roxanne Nicole Stone Aug 2020

Decellularization Of Porcine Cartilage Promotes Chondrogenic Differentiation Of Human Chondrocytes, Roxanne Nicole Stone

Boise State University Theses and Dissertations

Knee osteoarthritis (knee OA) is the most common type of osteoarthritis (OA) and accounts for 70% of arthritis-related hospital admissions and 23% of clinical visits. Major limitations in both the current non-surgical and surgical methods are that they only relieve pain and show no evidence for restoring natural tissue anatomy. Leaders in the field propose that a stem cell treatment approach holds promise for the regeneration of a greater proportion of hyaline-like tissue at the repair site. (Cross et al., 2014; Escobar Ivirico, Bhattacharjee, Kuyinu, Nair, & Laurencin, 2017; Helmick et al., 2008; Toh, Foldager, Pei, & Hui, 2014).

It …


The Effects Of Radiation On Memristor-Based Electronic Spiking Neural Networks, Sumedha Gandharava Dahl Aug 2020

The Effects Of Radiation On Memristor-Based Electronic Spiking Neural Networks, Sumedha Gandharava Dahl

Boise State University Theses and Dissertations

In this dissertation, memristor-based spiking neural networks (SNNs) are used to analyze the effect of radiation on the spatio-temporal pattern recognition (STPR) capability of the networks. Two-terminal resistive memory devices (memristors) are used as synapses to manipulate conductivity paths in the network. Spike-timing-dependent plasticity (STDP) learning behavior results in pattern learning and is achieved using biphasic shaped pre- and post-synaptic spikes. A TiO2 based non-linear drift memristor model designed in Verilog-A implements synaptic behavior and is modified to include experimentally observed effects of state-altering, ionizing, and off-state degradation radiation on the device. The impact of neuron “death” (disabled neuron …


Single Molecule Super-Resolution Microscopy Study On The Precision With Which Dna Nanostructures Can Orient Fluorescent Dyes, Brett Michael Ward Aug 2020

Single Molecule Super-Resolution Microscopy Study On The Precision With Which Dna Nanostructures Can Orient Fluorescent Dyes, Brett Michael Ward

Boise State University Theses and Dissertations

DNA nanotechnology enables the rapid, programmable self-assembly of novel structures and devices at the nanoscale. Utilizing the simplicity of Watson-Crick base pairing, DNA nanostructures are capable of assembling a variety of nanoparticles in arbitrary configurations with relative ease. Several emerging opto-electronic systems require a high degree of control of both the position and orientation of component fluorescent molecules, and while DNA nanostructures have demonstrated these capabilities, the precision with which DNA can orient fluorescent molecules is not well understood. Determining these bounds is critical in establishing the viability of DNA nanotechnology as a method of assembling fluorescent molecular networks.

In …


Studies On Space Grade Nano-Iconic Radiation Sensors Using Additive Manufacturing Technology, Shah Mohammad Rahmot Ullah Aug 2020

Studies On Space Grade Nano-Iconic Radiation Sensors Using Additive Manufacturing Technology, Shah Mohammad Rahmot Ullah

Boise State University Theses and Dissertations

Though Additive manufacturing technology has been developing for 30 years, in recent years, it gets researchers’ and industries’ attention for new expansion in fabricated electronics devices, especially on a flexible substrate. This technology allows fabricating complex design of electronics devices with multi-functionality. Its application has been significantly expanded to different fields such as sensors and other device prototypes for nuclear facilities, aerospace manufacturing, bio-medical, solar energy, etc. due to its low-cost efficiency and sustainable manufacturing. It has a huge advantage over traditional methods such as lower materials waste during production, avoiding complex etching system and harmful chemicals, simplified assembly system …


Assessing The Prevalence Of Suspicious Activities In Asphalt Pavement Construction Using Algorithmic Logics And Machine Learning, Mostofa Najmus Sakib Aug 2020

Assessing The Prevalence Of Suspicious Activities In Asphalt Pavement Construction Using Algorithmic Logics And Machine Learning, Mostofa Najmus Sakib

Boise State University Theses and Dissertations

Quality Control (QC) and Quality Assurance (QA) is a planned systematic approach to secure the satisfactory performance of Hot mix asphalt (HMA) construction projects. Millions of dollars are invested by government and state highway agencies to construct large-scale HMA construction projects. QC/QA is statistical approach for checking the desired construction properties through independent testing. The practice of QC/QA has been encouraged by the Federal Highway Administration (FHWA) since the mid 60’s. However, the standard QC/QA practice is often criticized on how effective such statistical tests and how representative the reported material tests are. Material testing data alteration in the HMA …


A Computational Framework To Model Mesenchymal Stem Cell Nucleus Mechanics Using Confocal Microscopy, Zeke Kennedy Aug 2020

A Computational Framework To Model Mesenchymal Stem Cell Nucleus Mechanics Using Confocal Microscopy, Zeke Kennedy

Boise State University Theses and Dissertations

The mechanical properties of the cell nucleus are emerging as a key component in genetic transcription. It has been shown that the stiffness of the nucleus in part regulates the transcription of genes in response to external mechanical stimuli. The stiffness has been shown to change as a result of both disease and changes to the external environment. While the mechanical structure of the nucleus can be visually documented using a confocal microscope, it is currently impossible to test the stiffness of the nucleus without a mechanical testing apparatus such as an atomic force microscope. This is problematic in that …


Design And Characterization Of Low Temperature Co-Fired Ceramic Dielectric Barrier Discharge Plasma Arrays For Killing And Removing Bacterial Biofilms, Adam Croteau Aug 2020

Design And Characterization Of Low Temperature Co-Fired Ceramic Dielectric Barrier Discharge Plasma Arrays For Killing And Removing Bacterial Biofilms, Adam Croteau

Boise State University Theses and Dissertations

Present research at Boise State University (BSU) has demonstrated the ability of low temperature co-fired ceramic (LTCC) Dielectric Barrier Discharge (DBD) cold atmospheric pressure plasma (CAP) devices to remove bacterial biofilms on steel substrates. Although bacteria may easily be inactivated by plasma treatment, the remains of the organism are still present on the substrate. It is shown that single element DBD CAP discharge devices operating at 2100 Vrms with 5 LPM of hydrated argon gas etched P. fluorescens biofilm within a few minutes of exposure. Similarly, using an 8 element array of linear plasma discharges, etch removal of biofilm was …


Design Of An Offline Handwriting Recognition System Tested On The Bangla And Korean Scripts, Nishatul Majid Aug 2020

Design Of An Offline Handwriting Recognition System Tested On The Bangla And Korean Scripts, Nishatul Majid

Boise State University Theses and Dissertations

This dissertation presents a flexible and robust offline handwriting recognition system which is tested on the Bangla and Korean scripts. Offline handwriting recognition is one of the most challenging and yet to be solved problems in machine learning. While a few popular scripts (like Latin) have received a lot of attention, many other widely used scripts (like Bangla) have seen very little progress. Features such as connectedness and vowels structured as diacritics make it a challenging script to recognize. A simple and robust design for offline recognition is presented which not only works reliably, but also can be used for …


Mxenes As Flow Electrodes For Capacitive Deionization Of Wastewater, Naqsh E. Mansoor Aug 2020

Mxenes As Flow Electrodes For Capacitive Deionization Of Wastewater, Naqsh E. Mansoor

Boise State University Theses and Dissertations

The energy-water nexus poses an integrated research challenge, while opening up an opportunity space for the development of energy efficient technologies for water remediation. Capacitive Deionization (CDI) is an upcoming reclamation technology that uses a small applied voltage applied across electrodes to electrophoretically remove dissolved ionic impurities from wastewater streams. Similar to a supercapacitor, the ions are stored in the electric double layer of the electrodes. Reversing the polarity of applied voltage enables recovery of the removed ionic impurities, allowing for recycling and reuse. Simultaneous materials recovery and water reclamation makes CDI energy efficient and resource conservative, with potential to …


Multiphysics Finite Element Analysis Of In-Pile Sensors For Advanced Nuclear Reactors, Takoda Linn Bingham Aug 2020

Multiphysics Finite Element Analysis Of In-Pile Sensors For Advanced Nuclear Reactors, Takoda Linn Bingham

Boise State University Theses and Dissertations

Nuclear reactors have large needs for in-pile sensors that are durable in high temperature, radioactive, and corrosive environments. With the use of multiphysics finite element analysis (FEA) researchers can speed up sensor prototyping. FEA also allows for a better fundamental understanding of sensors and enables sensor optimization. This research focuses on three types of in-pile sensors developed at Idaho National Laboratory: acoustic sensors, linear variable differential transformers (LVDT), and capacitance based strain gauges (CSG). Two acoustic sensors, magnetostrictive waveguides and piezoelectric surface acoustic wave (SAW) sensors were first modeled. These models showed the acoustic wave patterns and estimated the speed …


Quantifying The Effects Of Climate Change On Pavement Performance Prediction Using Aashtoware Pavement Me Design, Md Shahjalal Chowdhury Aug 2020

Quantifying The Effects Of Climate Change On Pavement Performance Prediction Using Aashtoware Pavement Me Design, Md Shahjalal Chowdhury

Boise State University Theses and Dissertations

Climate change is one of the most concerning global issues and has the potential to influence every aspect of human life. Like different components of society, it can impose significant adverse impacts on pavement infrastructure. Although several research efforts have focused on studying the effects of climate change on natural and built systems, its impact on pavement performance has not been studied as extensively. The primary objectives of this thesis research was to quantify the effect of temperature changes on flexible pavement response and performance prediction using the AASHTOWare Pavement ME Design (PMED), and quantify the effects of Local Calibration …


Material Design, Processing, And Engineering Requirements For Magnetic Shape Memory Devices, Andrew Armstrong Aug 2020

Material Design, Processing, And Engineering Requirements For Magnetic Shape Memory Devices, Andrew Armstrong

Boise State University Theses and Dissertations

For magnetic shape memory (MSM) alloys, a magnetic field stimulates a shape change. We use the shape change to build devices such as micro-actuators, sensors, and microfluidic pumps. Currently, (as a novel technology,) devices suffer from some material and magnetic driver shortcomings. Here we address the issues related to operating temperature, repeatability, failure, and magnetic driver development. To increase the operating temperature of the MSM material, we alloyed Fe and Cu to Ni-Mn-Ga. We showed that the element-specific contribution to the valence electron density as parameter systematically determines the effect of each element on the variation of the martensite transformation …


Low-Cost Test And Characterization Platform For Memristors, Lyle Jones May 2020

Low-Cost Test And Characterization Platform For Memristors, Lyle Jones

Boise State University Theses and Dissertations

The electrical Testing and Characterization of the devices built under research conditions on silicon wafers, diced wafers, or package parts have hampered research since the beginning of integrated circuits. The challenges of performing electrical characterization on devices are to acquire useful and accurate data, the ease of use of the test platform, the portability of the test equipment, the ability to automate quickly, to allow modifications to the platform, the ability to change the configuration of the Device Under Test (DUT) or the Memristor Based Design (MBD), and to do this within budget. The devices that this research is focused …


Diffusion Bonding Of Inconel 600 To Silicon Carbide For Next Generation High Temperature Applications, Yaiza Rodriguez Ortego May 2020

Diffusion Bonding Of Inconel 600 To Silicon Carbide For Next Generation High Temperature Applications, Yaiza Rodriguez Ortego

Boise State University Theses and Dissertations

Ceramic to metal interfaces are of interest for applications in extreme environments because they allow increased operational temperatures, resulting in greater thermodynamic efficiency in energy conversion processes. Ceramics offer high temperature corrosion resistance while metals offer robust and versatile solutions to assemblies. Understanding the solid-state reactions, the resulting interfacial microstructure, and the properties of the joints produced by diffusion bonding is essential for developing reliable ceramic to metal interfaces.

The combination of silicon carbide (SiC) and a nickel-based alloy (Inconel 600) offers improved strength and resistance to high temperature degradation. This work focuses on the understanding of the solid-state diffusion …


Empirical Modeling Of Structural Distortions In Perovskite Ceramics, Evan Connor Smith May 2020

Empirical Modeling Of Structural Distortions In Perovskite Ceramics, Evan Connor Smith

Boise State University Theses and Dissertations

Predictive models for composition-structure-property relationships are essential to realizing the full potential of electroceramic materials; however, the electroceramics industry has largely failed to invest in predictive models in favor of simple rules of thumb or expensive, time-consuming trial-and-error methods. Empirically derived predictive models have the potential to significantly improve and guide future research in a more cost-effective and timely manner. It may even be possible to predict some intrinsic properties (e.g., polarization) on the order of a unit cell using only the charge and size of each chemical component. Scientists and researchers may ultimately be able to use …


An All-Optical Excitonic Switch Templated On A Dna Scaffold Operated In The Liquid And Solid Phases, Donald L. Kellis May 2020

An All-Optical Excitonic Switch Templated On A Dna Scaffold Operated In The Liquid And Solid Phases, Donald L. Kellis

Boise State University Theses and Dissertations

The natural excitonic circuitry of photosynthetic organisms, including light harvesting antennas, provides a distinctive example of a highly attractive bio-inspired alternative to electronic circuits. Excitonics, which capitalizes on spatially arranged optically active molecules ability to capture and transfer light energy below the diffraction limit of light has garnered recognition as a potential disruptive replacement for electronic circuits. However, assembly of optically active molecules to construct even simple excitonic devices has been impeded by the limited maturity of suitable molecular scale assembly technologies.

An example of nanophotonic circuitry, natural light harvesting antennas employ proteins as scaffolds to organize and self-assemble light-active …


High- And Low-Voltage Mitigation In Distribution Systems Using Residential Static Volt-Ampere Reactive Compensators, Andrés Valdepeña Delgado May 2020

High- And Low-Voltage Mitigation In Distribution Systems Using Residential Static Volt-Ampere Reactive Compensators, Andrés Valdepeña Delgado

Boise State University Theses and Dissertations

Power distribution systems are experiencing a fast transformation from simple one-way radial feeders to complex systems with multiple sources and bidirectional power flows. The rapid increase of Distributed Generation (DG) connected to the distribution system over the last decade, especially solar photovoltaic (PV), has been the key element to this transformation.

The variable nature of PV-based DG has increased the complexity of voltage regulation in distribution systems. Electric Utilities are facing an increasing number of voltage issues in distribution systems with high penetration of DGs, leading customers to experience voltage levels outside of range A of the ANSI C84.1 standard. …


Secure Network-On-Chip Against Black Hole And Tampering Attacks, Luka Daoud May 2020

Secure Network-On-Chip Against Black Hole And Tampering Attacks, Luka Daoud

Boise State University Theses and Dissertations

The Network-on-Chip (NoC) has become the communication heart of Multiprocessors-System-on-Chip (MPSoC). Therefore, it has been subject to a plethora of security threats to degrade the system performance or steal sensitive information. Due to the globalization of the modern semiconductor industry, many different parties take part in the hardware design of the system. As a result, the NoC could be infected with a malicious circuit, known as a Hardware Trojan (HT), to leave a back door for security breach purposes. HTs are smartly designed to be too small to be uncovered by offline circuit-level testing, so the system requires an online …