Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

All Theses and Dissertations (ETDs)

2014

Optimization

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Modeling And Development Of Iterative Reconstruction Algorithms In Emerging X-Ray Imaging Technologies, Jiaofeng Xu May 2014

Modeling And Development Of Iterative Reconstruction Algorithms In Emerging X-Ray Imaging Technologies, Jiaofeng Xu

All Theses and Dissertations (ETDs)

Many new promising X-ray-based biomedical imaging technologies have emerged over the last two decades. Five different novel X-ray based imaging technologies are discussed in this dissertation: differential phase-contrast tomography (DPCT), grating-based phase-contrast tomography (GB-PCT), spectral-CT (K-edge imaging), cone-beam computed tomography (CBCT), and in-line X-ray phase contrast (XPC) tomosynthesis. For each imaging modality, one or more specific problems prevent them being effectively or efficiently employed in clinical applications have been discussed. Firstly, to mitigate the long data-acquisition times and large radiation doses associated with use of analytic reconstruction methods in DPCT, we analyze the numerical and statistical properties of two classes …


Design And Implementation Of Position-Encoded Microfluidic Microsphere-Trap Arrays, Xiaoxiao Xu Apr 2014

Design And Implementation Of Position-Encoded Microfluidic Microsphere-Trap Arrays, Xiaoxiao Xu

All Theses and Dissertations (ETDs)

Microarray devices are useful for detecting and analyzing biological targets, such as DNAs, mRNAs, proteins, etc. Applications of microarrays range from fundamental research to clinical diagnostics and drug discovery. In this dissertation, we consider a microsphere array device with predetermined positions of the microspheres. The microspheres are conjugate on their surfaces with molecular probes to capture the targets, and the targets are identified by the microspheres' positions. We implement the microsphere arrays by employing microfluidic technology and a hydrodynamic trapping mechanism. We call our device microfluidic microsphere-trap arrays. To fully realize the potential of the device in biomedical applications, we …