Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Engineering

Biologically – Plausible Load Feedback From Dynamically Scaled Robotic Model Insect Legs, William Zyhowski Jan 2023

Biologically – Plausible Load Feedback From Dynamically Scaled Robotic Model Insect Legs, William Zyhowski

Graduate Theses, Dissertations, and Problem Reports

Researchers have been studying the mechanisms underlying animal motor control for many years using computational models and biomimetic robots. Since testing some theories in animals can be challenging, this approach can enable unique contributions to the field. An example of a system that benefits from this modeling and robotics approach is the campaniform sensillum (CS), a kind of sensory organ used to detect the loads exerted on an insect's legs. The CS on the leg are found in groups on high-stress areas of the exoskeleton and have a major influence on the adaptation of walking behavior. The challenge for studying …


Motion Planning In Artificial And Natural Vector Fields, Bernardo Martinez Rocamora Junior Jan 2023

Motion Planning In Artificial And Natural Vector Fields, Bernardo Martinez Rocamora Junior

Graduate Theses, Dissertations, and Problem Reports

This dissertation advances the field of autonomous vehicle motion planning in various challenging environments, ranging from flows and planetary atmospheres to cluttered real-world scenarios. By addressing the challenge of navigating environmental flows, this work introduces the Flow-Aware Fast Marching Tree algorithm (FlowFMT*). This algorithm optimizes motion planning for unmanned vehicles, such as UAVs and AUVs, navigating in tridimensional static flows. By considering reachability constraints caused by vehicle and flow dynamics, flow-aware neighborhood sets are found and used to reduce the number of calls to the cost function. The method computes feasible and optimal trajectories from start to goal in challenging …


Top-Down & Bottom-Up Approaches To Robot Design, Dylan Michael Covell Jan 2022

Top-Down & Bottom-Up Approaches To Robot Design, Dylan Michael Covell

Graduate Theses, Dissertations, and Problem Reports

This thesis presents a study of different engineering design methodologies and demonstrates their effectiveness and limitations in actual robot designs. Some of these methods were blended together with focus on providing an easily interpreted project design flow while implementing more bottom-up, or feedback, elements into the design methodology. Typically design methods are learned through experience, and design taught in academia aims to shape and formalize previous experience. Usually, inexperienced engineers are taught approaches resembling the Verein Deutscher Ingenieure (VDI) 2221 process. This method presented by the Association of German Engineers in 2006 is regarded as the general system design process. …


Uncertainty Estimation For Stereo Visual Odometry, Derek W. Ross Jan 2021

Uncertainty Estimation For Stereo Visual Odometry, Derek W. Ross

Graduate Theses, Dissertations, and Problem Reports

Over the past few decades, unmanned aerial vehicles (UAVs) have been increasingly popular for use in locations that are lacking, or have unreliable global navigation satellite system (GNSS) availability. One of the more popular localization techniques for quadrotors is the use of visual odometry (VO) through monocular, RGB-D, or stereo cameras. With primary applications in the context of Simultaneous Localization And Mapping (SLAM) and indoor navigation, VO is largely used in combination with other sensors through Bayesian filters, namely Extended Kalman Filter (EKF) or Particle Filter. This work investigates the accuracy of two standard covariance estimation techniques for a feature-based …


Designs And Practical Control Methods For Soft Parallel Robots, Benjamin T. Buzzo Jan 2021

Designs And Practical Control Methods For Soft Parallel Robots, Benjamin T. Buzzo

Graduate Theses, Dissertations, and Problem Reports

The use of soft robotics is becoming an increasingly researched topic, since they can provide more flexibility in movements and increase safety when working with humans. However, they are more susceptible to modeling and manufacturing errors in the design.

The objective of this thesis is two-fold, the first objective is to determine the benefits and limitations of using calibration tables that rely on the PWM signals instead of modeling as a control method. If calibration tables are not adequate to achieve a high level of precision. The second objective is to determine if using a tethered mobile robot in unison …


Active Localization For Robotic Systems: Algorithms And Cost Metrics, Jared Strader Jan 2021

Active Localization For Robotic Systems: Algorithms And Cost Metrics, Jared Strader

Graduate Theses, Dissertations, and Problem Reports

In the real world, a robotic system must operate in the presence of motion and sensing uncertainty. This is caused by the fact that the motion of a robotic system is stochastic due to disturbances from the environment, and the states are only partially observable due noise in the sensor measurements. As a result, the true state of a robotic system is unknown, and estimation techniques must be used to infer the states from the belief, which is the probability distribution over all possible states. Accordingly, a robotic system must be capable of reasoning about the quality of the belief …


Planning Algorithms Under Uncertainty For A Team Of A Uav And A Ugv For Underground Exploration, Matteo De Petrillo Jan 2021

Planning Algorithms Under Uncertainty For A Team Of A Uav And A Ugv For Underground Exploration, Matteo De Petrillo

Graduate Theses, Dissertations, and Problem Reports

Robots’ autonomy has been studied for decades in different environments, but only recently, thanks to the advance in technology and interests, robots for underground exploration gained more attention. Due to the many challenges that any robot must face in such harsh environments, this remains an challenging and complex problem to solve.

As technology became cheaper and more accessible, the use of robots for underground ex- ploration increased. One of the main challenges is concerned with robot localization, which is not easily provided by any Global Navigation Services System (GNSS). Many developments have been achieved for indoor mobile ground robots, making …


Route Planning For Long-Term Robotics Missions, Christopher Alexander Arend Tatsch Jan 2020

Route Planning For Long-Term Robotics Missions, Christopher Alexander Arend Tatsch

Graduate Theses, Dissertations, and Problem Reports

Many future robotic applications such as the operation in large uncertain environment depend on a more autonomous robot. The robotics long term autonomy presents challenges on how to plan and schedule goal locations across multiple days of mission duration. This is an NP-hard problem that is infeasible to solve for an optimal solution due to the large number of vertices to visit. In some cases the robot hardware constraints also adds the requirement to return to a charging station multiple times in a long term mission. The uncertainties in the robot model and environment require the robot planner to account …