Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Engineering

Theoretical And Computational Modeling Of Contaminant Removal In Porous Water Filters, Aman Raizada Aug 2021

Theoretical And Computational Modeling Of Contaminant Removal In Porous Water Filters, Aman Raizada

Theses and Dissertations

Contaminant transport in porous media is a well-researched problem across many scientific and engineering disciplines, including soil sciences, groundwater hydrology, chemical engineering, and environmental engineering. In this thesis, we attempt to tackle this multiscale transport problem using the upscaling approach, which leads to the development of macroscale models while considering a porous medium as an averaged continuum system.

First, we describe a volume averaging-based method for estimating flow permeability in porous media. This numerical method overcomes several challenges faced during the application of traditional permeability estimation techniques, and is able to accurately provide the complete permeability tensor of a porous …


Silica-Based Materials For Water Treatment Applications: Adsorption And Supported Noble Metal-Based Catalysis, Xiaopeng Min Aug 2021

Silica-Based Materials For Water Treatment Applications: Adsorption And Supported Noble Metal-Based Catalysis, Xiaopeng Min

Theses and Dissertations

Various contaminants have been widely detected in aquatic systems due to both natural and anthropogenic activities, such as conventional and emerging organic pollutants (e.g., nitroarenes, per- and poly-fluoroalkyl substances (PFAS)), and toxic oxyanions (e.g., chlorate, selenate). The presence of these contaminants may pose negative effects on both human health and water systems. Therefore, it is of great desire to develop novel materials and technologies to treat these waterborne pollutants.Catalytic treatment using noble metal (e.g., Pd)-based catalysts has emerged as a promising method for reduction of waterborne contaminants. Silica-based supports may enhance the reactivity and sustainability of Pd-based catalysts by improving …


Graphene-Based Materials Coated On Zeolite For The Removal Of Persistent Organic Pollutants From Water, Yan Zhang Dec 2018

Graphene-Based Materials Coated On Zeolite For The Removal Of Persistent Organic Pollutants From Water, Yan Zhang

Theses and Dissertations

Adsorption is a fast, low-cost and the most commonly implemented water treatment technology for the removal of multiple contaminations from ground water, drinking water or wastewater. Difficulties in removing persistent organic pollutants (POPs) to improve quality and safety of treated water sources require the exploration of novel and multifunctional materials. Graphene-based materials having unique structures, high specific surface areas and tailorable functional groups are promising candidates as adsorbents.

The main goal of this work is to fabricate a novel adsorbent made of GO/rGO attached on natural zeolite substrates for the removal of variably charged organic model compounds and POPs in …


Novel Engineered Porous Materials For The Removal Of Lead From Water, Mohsen Hajipour Hajipour Manjili Dec 2018

Novel Engineered Porous Materials For The Removal Of Lead From Water, Mohsen Hajipour Hajipour Manjili

Theses and Dissertations

The estimated average blood lead level for the population younger than 5 years in the United States is approximately 100 times higher than ancient background levels, indicating that substantial sources of lead exposure exist in the environment. This research is focused on the removal of lead from water with a functionalized zeolite. Functionalization improves adsorption behavior to achieve adsorbent materials with high capacity and stability with potential multiple re-uses.

The lead sorption from water onto an Australian zeolitic mineral (clinoptilolite) unmodified and modified with sulfide-based reagents is investigated with batch and fixed bed column experiments. The effect of solution pH, …


A Study On The Synthesis - Structure - Property - Performance Relationship Of Bulk Functionalized Polyurethane Foams For Water Filtration Applications, Subhashini Gunashekar May 2015

A Study On The Synthesis - Structure - Property - Performance Relationship Of Bulk Functionalized Polyurethane Foams For Water Filtration Applications, Subhashini Gunashekar

Theses and Dissertations

Polymers, macromolecules made of repeat units, are one of the major building blocks of life. They exist naturally in the form of DNA, proteins, sugars, cellulose, natural rubber etc. However, it was only in the mid twentieth century man began to understand its true nature and developed a new class of materials called ‘Plastics’. In recent years, the concept of a truly tailor made polymer has become a reality as a result of better understanding of the polymer structure-property relationships, newer polymerization techniques and due to the availability of new low cost monomers. Polymers from different elements with any desired …


Probing Bonding And Dynamics At Heterogeneous Adsorbate/Graphene Interfaces, Eric Charles Mattson May 2013

Probing Bonding And Dynamics At Heterogeneous Adsorbate/Graphene Interfaces, Eric Charles Mattson

Theses and Dissertations

Graphene-based materials are becoming an astoundingly promising choice for many relevant technological and environmental applications. Deriving graphene from the reduction of graphene oxide (GO) is becoming a popular and inexpensive route toward the synthesis of these materials. While the desired product from GO reduction is pristine graphene, defects and residual oxygen functional groups inherited from the parent GO render reduced graphene oxide (RGO) distinct from graphene. In this work, the structure and bonding for GO and RGO is investigated to the end of a working understanding of the composition and properties of these materials. In situ selected area electron diffraction …