Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Spatially-Dependent Reactor Kinetics And Supporting Physics Validation Studies At The High Flux Isotope Reactor, David Chandler Aug 2011

Spatially-Dependent Reactor Kinetics And Supporting Physics Validation Studies At The High Flux Isotope Reactor, David Chandler

Doctoral Dissertations

The computational ability to accurately predict the dynamic behavior of a nuclear reactor core in response to reactivity-induced perturbations is an important subject in the field of reactor physics. Space-time and point kinetics methodologies were developed for the purpose of studying the transient-induced behavior of the Oak Ridge National Laboratory (ORNL) High Flux Isotope Reactor’s (HFIR) compact core. The space-time simulations employed the three-group neutron diffusion equations, which were solved via the COMSOL partial differential equation coefficient application mode. The point kinetics equations were solved with the PARET code and the COMSOL ordinary differential equation application mode. The basic nuclear …


A Thermal Feasibility Study And Design Of An Air-Cooled Rectangular Wide Band Gap Inverter, Jacob Christopher Faulkner May 2011

A Thermal Feasibility Study And Design Of An Air-Cooled Rectangular Wide Band Gap Inverter, Jacob Christopher Faulkner

Masters Theses

All power electronics consist of solid state devices that generate heat. Managing the temperature of these devices is critical to their performance and reliability. Traditional methods involving liquid-cooling systems are expensive and require additional equipment for operation. Air-cooling systems are less expensive but are typically less effective at cooling the electronic devices. The cooling system that is used depends on the specific application.

Until recently, silicon based devices have been used for the solid-state devices in power electronics. Newly developed silicon-carbide based wide band gap devices operate at maximum temperatures higher than traditional silicon devices. Due to the permissible increase …