Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 14 of 14

Full-Text Articles in Engineering

Exact Models, Heuristics, And Supervised Learning Approaches For Vehicle Routing Problems, Zefeng Lyu Dec 2023

Exact Models, Heuristics, And Supervised Learning Approaches For Vehicle Routing Problems, Zefeng Lyu

Doctoral Dissertations

This dissertation presents contributions to the field of vehicle routing problems by utilizing exact methods, heuristic approaches, and the integration of machine learning with traditional algorithms. The research is organized into three main chapters, each dedicated to a specific routing problem and a unique methodology. The first chapter addresses the Pickup and Delivery Problem with Transshipments and Time Windows, a variant that permits product transfers between vehicles to enhance logistics flexibility and reduce costs. To solve this problem, we propose an efficient mixed-integer linear programming model that has been shown to outperform existing ones. The second chapter discusses a practical …


Improving Mobility And Safety In Traditional And Intelligent Transportation Systems Using Computational And Mathematical Modeling, Shahrbanoo Rezaei Aug 2023

Improving Mobility And Safety In Traditional And Intelligent Transportation Systems Using Computational And Mathematical Modeling, Shahrbanoo Rezaei

Doctoral Dissertations

In traditional transportation systems, park-and-ride (P&R) facilities have been introduced to mitigate the congestion problems and improve mobility. This study in the second chapter, develops a framework that integrates a demand model and an optimization model to study the optimal placement of P&R facilities. The results suggest that the optimal placement of P&R facilities has the potential to improve network performance, and reduce emission and vehicle kilometer traveled. In intelligent transportation systems, autonomous vehicles are expected to bring smart mobility to transportation systems, reduce traffic congestion, and improve safety of drivers and passengers by eliminating human errors. The safe operation …


Advanced Air Quality Management With Machine Learning, Cheng-Pin Kuo May 2023

Advanced Air Quality Management With Machine Learning, Cheng-Pin Kuo

Doctoral Dissertations

Air pollution has been a significant health risk factor at a regional and global scale. Although the present method can provide assessment indices like exposure risks or air pollutant concentrations for air quality management, the modeling estimations still remain non-negligible bias which could deviate from reality and limit the effectiveness of emission control strategies to reduce air pollution and derive health benefits. The current development in air quality management is still impeded by two major obstacles: (1) biased air quality concentrations from air quality models and (2) inaccurate exposure risk estimations

Inspired by more available and overwhelming data, machine learning …


Improved Spatial Resolution For Double-Sided Strip Detectors Using Lithium Indium Diselenide Semiconductors, Jake Alexander Gallagher May 2023

Improved Spatial Resolution For Double-Sided Strip Detectors Using Lithium Indium Diselenide Semiconductors, Jake Alexander Gallagher

Doctoral Dissertations

This research focuses on the evaluation of lithium indium diselenide (LISe) semiconductors in double-sided strip detector (DSSDs) designs as an example for the potential to achieve unparalleled neutron detection efficiency, spatial resolution, and timing resolution detection. LISe semiconductors offer high neutron detection efficiency due to the ~25% atomic ratio of Lithium-6, maximizing its efficiency of ~75% with 1 mm thickness at 2.8 angstroms. Furthermore, the 4.78 MeV 𝑄-value enables high intrinsic gamma discrimination in a pixelated design (electron range). These characteristics make LISe an alternative option for neutron radiography, energy-resolved imaging, and other neutron interrogation techniques. This dissertation summarizes my …


Understanding And Simulating Wildfire Changes Using Advanced Statical And Process-Oriented Models, Rongyun Tang May 2023

Understanding And Simulating Wildfire Changes Using Advanced Statical And Process-Oriented Models, Rongyun Tang

Doctoral Dissertations

This study aims to investigate the spatiotemporal dynamic of global wildfires, their underlying climate-driving mechanisms, and their predictability by utilizing multiple data sources (both process-based model simulations and satellite-based observations) and multiple analytical methods including machine learning techniques (MLTs).

We first explored the global wildfire interannual variability (IAV) and its climate sensitivity across nine biomes from 1997 to 2018, leveraging the state-of-art U.S. Department of Energy’s Energy Exascale Earth System Model (E3SM) land component (ELM-v1) simulations with six sets of climate forcings. Results indicate that 1) ELM simulations could reproduce the IAV of wildfire in terms of magnitudes, distribution, bio-regional …


Multi-Objective Optimization Of The Fast Neutron Source By Machine Learning, John L. Pevey Dec 2022

Multi-Objective Optimization Of The Fast Neutron Source By Machine Learning, John L. Pevey

Doctoral Dissertations

The design and optimization of nuclear systems can be a difficult task, often with prohibitively large design spaces, as well as both competing and complex objectives and constraints. When faced with such an optimization, the task of designing an algorithm for this optimization falls to engineers who must apply engineering knowledge and experience to reduce the scope of the optimization to a manageable size. When sufficient computational resources are available, unsupervised optimization can be used.

The optimization of the Fast Neutron Source (FNS) at the University of Tennessee is presented as an example for the methodologies developed in this work. …


Exploration Of The Stability Of Multicomponent Metal Halide Perovskites Utilizing Automated, High-Throughput Methods And Machine Learning, Katherine N. Higgins May 2022

Exploration Of The Stability Of Multicomponent Metal Halide Perovskites Utilizing Automated, High-Throughput Methods And Machine Learning, Katherine N. Higgins

Doctoral Dissertations

Because of their outstanding optoelectronic properties and low-cost, solution-based fabrication, metal halide perovskites (MHP) are appealing candidates for a variety of applications, such as photovoltaics, light-emitting diodes, photodetectors, and ionizing radiation detectors. However, concerns of this material’s stability in pure or device-integrated form under external stimuli, such as light, humidity, oxygen, and heat, have prohibited the widespread utilizations of MHPs. It is well established that alloying can lessen detrimental effects of these factors. To date, a small portion of alloyed compositions have been investigated compared to the thousands of possible perovskites proposed theoretically. Conventional approaches to materials discovery and optimization, …


Human Fatigue Predictions In Complex Aviation Crew Operational Impact Conditions, Suresh Rangan May 2021

Human Fatigue Predictions In Complex Aviation Crew Operational Impact Conditions, Suresh Rangan

Doctoral Dissertations

In this last decade, several regulatory frameworks across the world in all modes of transportation had brought fatigue and its risk management in operations to the forefront. Of all transportation modes air travel has been the safest means of transportation. Still as part of continuous improvement efforts, regulators are insisting the operators to adopt strong fatigue science and its foundational principles to reinforce safety risk assessment and management. Fatigue risk management is a data driven system that finds a realistic balance between safety and productivity in an organization. This work discusses the effects of mathematical modeling of fatigue and its …


Automated Intelligent Cueing Device To Improve Ambient Gait Behaviors For Patients With Parkinson's Disease, Nader Naghavi Dec 2020

Automated Intelligent Cueing Device To Improve Ambient Gait Behaviors For Patients With Parkinson's Disease, Nader Naghavi

Doctoral Dissertations

Freezing of gait (FoG) is a common motor dysfunction in individuals with Parkinson’s disease (PD). FoG impairs walking and is associated with increased fall risk. Although pharmacological treatments have shown promise during ON-medication periods, FoG remains difficult to treat during medication OFF state and in advanced stages of the disease. External cueing therapy in the forms of visual, auditory, and vibrotactile, has been effective in treating gait deviations. Intelligent (or on-demand) cueing devices are novel systems that analyze gait patterns in real-time and activate cues only at moments when specific gait alterations are detected. In this study we developed methods …


A Datacentric Algorithm For Gamma-Ray Radiation Anomaly Detection In Unknown Background Environments, James M. Ghawaly Jr Aug 2020

A Datacentric Algorithm For Gamma-Ray Radiation Anomaly Detection In Unknown Background Environments, James M. Ghawaly Jr

Doctoral Dissertations

The detection of anomalous radioactive sources in environments characterized by a high level of variation in the background radiation is a challenging problem in nuclear security. A variety of natural and artificial sources contribute to background radiation dynamics including variations in the absolute and relative concentrations of naturally occurring radioisotopes in different materials, the wet-deposition of $^{222}$Rn daughters during precipitation, and background suppression due to physical objects in the detector scene called ``clutter." This dissertation presents a new datacentric algorithm for radiation anomaly detection in dynamic background environments. The algorithm is based on a custom deep neural autoencoder architecture called …


3d Robotic Sensing Of People: Human Perception, Representation And Activity Recognition, Hao Zhang Aug 2014

3d Robotic Sensing Of People: Human Perception, Representation And Activity Recognition, Hao Zhang

Doctoral Dissertations

The robots are coming. Their presence will eventually bridge the digital-physical divide and dramatically impact human life by taking over tasks where our current society has shortcomings (e.g., search and rescue, elderly care, and child education). Human-centered robotics (HCR) is a vision to address how robots can coexist with humans and help people live safer, simpler and more independent lives.

As humans, we have a remarkable ability to perceive the world around us, perceive people, and interpret their behaviors. Endowing robots with these critical capabilities in highly dynamic human social environments is a significant but very challenging problem in practical …


Mitigation Of Catastrophic Interference In Neural Networks And Ensembles Using A Fixed Expansion Layer, Robert Austin Coop Aug 2013

Mitigation Of Catastrophic Interference In Neural Networks And Ensembles Using A Fixed Expansion Layer, Robert Austin Coop

Doctoral Dissertations

Catastrophic forgetting (also known in the literature as catastrophic interference) is the phenomenon by which learning systems exhibit a severe exponential loss of learned information when exposed to relatively small amounts of new training data. This loss of information is not caused by constraints due to the lack of resources available to the learning system, but rather is caused by representational overlap within the learning system and by side-effects of the training methods used. Catastrophic forgetting in auto-associative pattern recognition is a well-studied attribute of most parameterized supervised learning systems. A variation of this phenomenon, in the context of feedforward …


Online Multi-Stage Deep Architectures For Feature Extraction And Object Recognition, Derek Christopher Rose Aug 2013

Online Multi-Stage Deep Architectures For Feature Extraction And Object Recognition, Derek Christopher Rose

Doctoral Dissertations

Multi-stage visual architectures have recently found success in achieving high classification accuracies over image datasets with large variations in pose, lighting, and scale. Inspired by techniques currently at the forefront of deep learning, such architectures are typically composed of one or more layers of preprocessing, feature encoding, and pooling to extract features from raw images. Training these components traditionally relies on large sets of patches that are extracted from a potentially large image dataset. In this context, high-dimensional feature space representations are often helpful for obtaining the best classification performances and providing a higher degree of invariance to object transformations. …


Computer Modeling And Signal Analysis Of Cardiovascular Physiology, Henian Xia Dec 2012

Computer Modeling And Signal Analysis Of Cardiovascular Physiology, Henian Xia

Doctoral Dissertations

This dissertation aims to study cardiovascular physiology from the cellular level to the whole heart level to the body level using numerical approaches.

A mathematical model was developed to describe electromechanical interaction in the heart. The model integrates cardio-electrophysiology and cardiac mechanics through excitation-induced contraction and deformation-induced currents. A finite element based parallel simulation scheme was developed to investigate coupled electrical and mechanical functions. The developed model and numerical scheme were utilized to study cardiovascular dynamics at cellular, tissue and organ levels. The influence of ion channel blockade on cardiac alternans was investigated. It was found that the channel blocker …