Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Photonic Crystal-Based Flow Cytometry, Justin William Stewart Oct 2014

Photonic Crystal-Based Flow Cytometry, Justin William Stewart

USF Tampa Graduate Theses and Dissertations

Photonic crystals serve as powerful building blocks for the development of lab-on-chip devices. Currently they are used for a wide range of miniaturized optical components such as extremely compact waveguides to refractive-index based optical sensors. Here we propose a new technique for analyzing and characterizing cells through the design of a micro-flow cytometer using photonic crystals. While lab scale flow cytometers have been critical to many developments in cellular biology they are not portable, difficult to use and relatively expensive. By making a miniature sensor capable of replicating the same functionality as the large scale units with photonic crystals, we …


Development Of Electroplated-Ni Structured Micromechanical Resonators For Rf Application, Mian Wei Sep 2014

Development Of Electroplated-Ni Structured Micromechanical Resonators For Rf Application, Mian Wei

USF Tampa Graduate Theses and Dissertations

On-chip vibrating MEMS resonators with high frequency-Q product on par with that of the off-chip quartz crystals have attracted lots of attention from both academia and industry for applications on sensing, signal processing, and wireless communication. Up to now, several approaches for monolithic integration of MEMS and transistors have been demonstrated. Vibrating micromechanical disk resonators which utilize electroplated nickel as the structural material along with either a solid-gap high-k dielectric capacitive transducer or a piezoelectric transducer have great potential to offer unprecedented performance and capability of seamless integration with integrated circuits.

Despite the frequency drift problems encountered in early attempts …


Low Loss Vhf And Uhf Filters For Wireless Communications Based On Piezoelectrically-Transduced Micromechanical Resonators, Julio Mario Dewdney Jan 2012

Low Loss Vhf And Uhf Filters For Wireless Communications Based On Piezoelectrically-Transduced Micromechanical Resonators, Julio Mario Dewdney

USF Tampa Graduate Theses and Dissertations

For the past decade, a great deal of research has been focused towards developing a viable on-chip solution to replace the current state-of-the-art VHF and UHF filters based on SAW and FBAR technologies. Although filters based on SAW and FBAR devices are capable of fulfilling the basic requirements needed for IF and RF bandpass filtering and reference signal generation, an alternative solution that can enable the next generation of multi-frequency and multi-mode transceivers while enabling size and price reduction by allowing the manufacturing of single-chip monolithic RF transceivers is highly desired. In response to these new needs, piezoelectrically-transduced micromechanical filters …


Continuous Electrowetting Actuation Utilizing Current Rectification Properties Of Valve Metal Films, Corey M. Lynch Oct 2010

Continuous Electrowetting Actuation Utilizing Current Rectification Properties Of Valve Metal Films, Corey M. Lynch

USF Tampa Graduate Theses and Dissertations

Electrowetting on dielectric (EWOD) is a technique for reducing the apparent contact angle of a fluid droplet, which has many promising applications in the fields of optics, digital displays, and lab-on-a-chip research. In this thesis, a design is presented for a novel single circuit device for achieving continuous droplet motion, by using the current-rectifying properties of valve metals to create diode-like behavior. This contrasts with existing designs, which require an array of individual electrodes to achieve motion in discrete steps. We are able to demonstrate continuous droplet motion across a 28mm-long test strip with an applied voltage of 303 V …