Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Engineering

Experimental Investigation Of Impact Localization In Composite Plate Using Newly Developed Imaging Method, Mohammad Faisal Haider, Asaad Migot, Md Yeasin Bhuiyan, Victor Giurgiutiu Aug 2018

Experimental Investigation Of Impact Localization In Composite Plate Using Newly Developed Imaging Method, Mohammad Faisal Haider, Asaad Migot, Md Yeasin Bhuiyan, Victor Giurgiutiu

Faculty Publications

This paper focuses on impact localization of composite structures, which possess more complexity in the guided wave propagation due to the anisotropic behavior of composite materials. In this work, a composite plate was manufactured by using a compression molding process with proper pressure and temperature cycle. Eight layers of woven composite prepreg were used to manufacture the composite plate. A structural health monitoring (SHM) technique was implemented with piezoelectric wafer active sensors (PWAS) to detect and localize the impact on the plate. There were two types of impact event that were considered in this paper (a) low energy impact event …


Ultrasonics Transduction In Metallic And Composite Structures For Structural Health Monitoring Using Extensional And Shear Horizontal Piezoelectric Wafer Active Sensors, Ayman Kamal Abdelrahman Aug 2014

Ultrasonics Transduction In Metallic And Composite Structures For Structural Health Monitoring Using Extensional And Shear Horizontal Piezoelectric Wafer Active Sensors, Ayman Kamal Abdelrahman

Theses and Dissertations

Structural health monitoring (SHM) is crucial for monitoring structures performance, detecting the initiation of flaws and damages, and predicting structural life span. The dissertation emphasizes on developing analytical and numerical models for ultrasonics transduction between piezoelectric wafer active sensors (PWAS), and metallic and composite structures.

The first objective of this research is studying the power and energy transduction between PWAS and structure for the aim of optimizing guided waves mode tuning and PWAS electromechanical (E/M) impedance for power-efficient SHM systems. Analytical models for power and energy were developed based on exact Lamb wave solution with application on multimodal Lamb wave …


Mechanics Of Composite Materials In Fuel Cell Systems, Kenneth Reifsnider, Xinyu Huang, G. Ju, Matthew Feshler, K. An Jan 2005

Mechanics Of Composite Materials In Fuel Cell Systems, Kenneth Reifsnider, Xinyu Huang, G. Ju, Matthew Feshler, K. An

Faculty Publications

The science and technology that are fundamental to the concept of composite materials are also the foundation for the construction and function of fuel cells and fuel cell systems. The present paper outlines this relationship in the context of the physics and chemistry that are enabled by the specific selection and arrangement of constituents of the “functional composite” fuel cell. General principles of operation are described, and fundamental issues are defined that must be addressed by the composites community if the fuel cell science and engineering is to advance. Examples of several types of functional composite fuel cells are presented, …


Theoretical Analysis For Obtaining Physical Properties Of Composite Electrodes, Parthasarathy M. Gomadam, John W. Weidner, Thomas A. Zawodzinski, Andrew P. Saab Jan 2003

Theoretical Analysis For Obtaining Physical Properties Of Composite Electrodes, Parthasarathy M. Gomadam, John W. Weidner, Thomas A. Zawodzinski, Andrew P. Saab

Faculty Publications

A theoretical analysis is presented that allows in situ measurements of the physical properties of a composite electrode, namely, the electronic conductivity, the ionic conductivity, the exchange-current density, and the double-layer capacitance. Use is made of the current-voltage responses of the composite electrode to dc and ac polarizations under three different experimental configurations. This analysis allows the physical properties to be obtained even when the various resistances in the composite (e.g., ionic, electronic, and charge-transfer) are of comparable values.


A Mathematical Model Of Oxide/Carbon Composite Electrode For Supercapacitors, Hansung Kim, Branko N. Popov Jan 2003

A Mathematical Model Of Oxide/Carbon Composite Electrode For Supercapacitors, Hansung Kim, Branko N. Popov

Faculty Publications

A pseudo two-dimensional model is developed for the general application of supercapacitors consisting of an oxide/carbon composite electrode. The model takes into account the diffusion of protons in the oxide particle by employing the method of superposition. RuO2/carbon system is modeled as a specific example. From the simulation data, it is found that the oxide particle size and proton diffusion coefficient have an enormous effect on the performance at high discharge rate due to the limitation of proton transport into RuO2 particles. With increasing carbon ratio, the porosity of electrode increases, which causes the potential drop in …


Distributions Of Noble Metal Pd And Pt In Mesoporous Silica, J. Arbiol, A. Cabot, J. R. Morante, Fanglin Chen, Meilin Liu Oct 2002

Distributions Of Noble Metal Pd And Pt In Mesoporous Silica, J. Arbiol, A. Cabot, J. R. Morante, Fanglin Chen, Meilin Liu

Faculty Publications

Mesoporous silica nanostructures have been synthesized and loaded with Pd and Pt catalytic noble metals. It is found that Pd forms small nanoclusters (3–5 nm) on the surface of the mesoporous structure whereas Pt impregnation results in the inclusion of Pt nanostructures within the silica hexagonal pores (from nanoclusters to nanowires). It is observed that these materials have high catalytic properties for CO–CH4 combustion, even in a thick film form. In particular, results indicate that the Pt and Pd dispersed in mesoporous silica are catalytically active as a selective filter for gas sensors.


Study Of Sn-Coated Graphite As Anode Material For Secondary Lithium-Ion Batteries, Basker Veeraraghavan, Anand Durairajan, Bala Haran, Branko N. Popov, Ronald Guidotti Jan 2002

Study Of Sn-Coated Graphite As Anode Material For Secondary Lithium-Ion Batteries, Basker Veeraraghavan, Anand Durairajan, Bala Haran, Branko N. Popov, Ronald Guidotti

Faculty Publications

Tin-graphite composites have been developed as an alternate anode material for Li-ion batteries using an autocatalytic deposition technique. The specific discharge capacity, coulombic efficiency, rate capability behavior, and cycle life of Sn-C composites has been studied using a variety of electrochemical methods. The amount of tin loading and the heating temperature have a significant effect on the composite performance. The synthesis conditions and Sn loading on graphite have been optimized to obtain the maximum reversible capacity for the composite electrode. Heating the composite converts it from amorphous to crystalline form. Apart from higher capacity, Sn-graphite composites possesses higher coulombic efficiency, …


Synthesis And Characterization Of Hydrous Ruthenium Oxide-Carbon Supercapacitors, Manikandan Ramani, Bala S. Haran, Ralph E. White, Branko N. Popov Jan 2001

Synthesis And Characterization Of Hydrous Ruthenium Oxide-Carbon Supercapacitors, Manikandan Ramani, Bala S. Haran, Ralph E. White, Branko N. Popov

Faculty Publications

It is shown that composite Ru oxide-carbon based supercapacitors possess superior energy and power densities as compared to bare carbon. An electroless deposition process was used to synthesize the ruthenium oxide-carbon composites. Ru is dispersed on the carbon matrix as small particles. The effect of electrochemical oxidation and temperature treatment on the material performance has been studied extensively. Increasing the oxidation temperature reduces the proton transport rate and also increases the degree of crystallinity of the deposits. This adversely affects the performance of the composite. Loading a small amount of Ru oxide (9 wt %) on carbon increases the capacitance …