Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Coatings On Mammalian Cells: Interfacing Cells With Their Environment, Kara A. Davis, Pei-Jung Wu, Calvin F. Cahall, Cong Li, Anuhya Gottipati, Brad J. Berron Jan 2019

Coatings On Mammalian Cells: Interfacing Cells With Their Environment, Kara A. Davis, Pei-Jung Wu, Calvin F. Cahall, Cong Li, Anuhya Gottipati, Brad J. Berron

Chemical and Materials Engineering Faculty Publications

The research community is intent on harnessing increasingly complex biological building blocks. At present, cells represent a highly functional component for integration into higher order systems. In this review, we discuss the current application space for cellular coating technologies and emphasize the relationship between the target application and coating design. We also discuss how the cell and the coating interact in common analytical techniques, and where caution must be exercised in the interpretation of results. Finally, we look ahead at emerging application areas that are ideal for innovation in cellular coatings. In all, cellular coatings leverage the machinery unique to …


A Simple And Robust Approach To Reducing Contact Resistance In Organic Transistors, Zachary A. Lamport, Katrina J. Barth, Hyunsu Lee, Eliot Gann, Sebastian Engmann, Hu Chen, Martin Guthold, Iain Mcculloch, John E. Anthony, Lee J. Richter, Dean M. Delongchamp, Oana D. Jurchescu Dec 2018

A Simple And Robust Approach To Reducing Contact Resistance In Organic Transistors, Zachary A. Lamport, Katrina J. Barth, Hyunsu Lee, Eliot Gann, Sebastian Engmann, Hu Chen, Martin Guthold, Iain Mcculloch, John E. Anthony, Lee J. Richter, Dean M. Delongchamp, Oana D. Jurchescu

Chemistry Faculty Publications

Efficient injection of charge carriers from the contacts into the semiconductor layer is crucial for achieving high-performance organic devices. The potential drop necessary to accomplish this process yields a resistance associated with the contacts, namely the contact resistance. A large contact resistance can limit the operation of devices and even lead to inaccuracies in the extraction of the device parameters. Here, we demonstrate a simple and efficient strategy for reducing the contact resistance in organic thin-film transistors by more than an order of magnitude by creating high work function domains at the surface of the injecting electrodes to promote channels …