Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Lignin Valorization In Ionic Liquids And Deep Eutectic Solvent Via Catalysis And Biocatalysis, Jian Shi, Lalitendu Das, Enshi Liu, Joseph C. Stevens Jul 2020

Lignin Valorization In Ionic Liquids And Deep Eutectic Solvent Via Catalysis And Biocatalysis, Jian Shi, Lalitendu Das, Enshi Liu, Joseph C. Stevens

Biosystems and Agricultural Engineering Faculty Patents

This invention relates to a method for extracting valorized compounds from lignin by contacting lignins with an ionic liquid and/or a deep eutectic solvent and adding a catalyst and/or a biocatalyst to assist in breaking down the source material. Converting lignin into high value chemicals adds revenues for a bio-refinery and helps to improve the economic viability of biofuel production.


Characterization And Enzyme Engineering Of A Hyperthermophilic Laccase Toward Improving Its Activity In Ionic Liquid, Joseph Craig Stevens, David W. Rodgers, Claire Dumon, Jian Shi Jul 2020

Characterization And Enzyme Engineering Of A Hyperthermophilic Laccase Toward Improving Its Activity In Ionic Liquid, Joseph Craig Stevens, David W. Rodgers, Claire Dumon, Jian Shi

Biosystems and Agricultural Engineering Faculty Publications

Ionic liquids (ILs) are organic salts molten at room temperature that can be used for a wide variety of applications. Many ILs, such as 1-ethyl-3-methylimidazolium acetate ([C2C1Im][OAc]), have been shown to remove a significant fraction of the complex biopolymer lignin from biomass during pretreatment. Valorizing lignin via biological pathways (e.g., enzymes) holds promise but is limited by the low biocompatibility of many ILs used for pretreatment. The discovery of thermostable enzymes and the application of enzyme engineering techniques have yielded biocatalysts capable of withstanding high concentrations of ILs. Converting lignin from a waste product to value-added …


Characterization And Enzyme Engineering Of Laccases Towards Lignin Valorization In Aqueous Ionic Liquids, Joseph Stevens Jan 2020

Characterization And Enzyme Engineering Of Laccases Towards Lignin Valorization In Aqueous Ionic Liquids, Joseph Stevens

Theses and Dissertations--Biosystems and Agricultural Engineering

Lignin is one of the most abundant polymers found in nature, making up 15 – 40% of the weight of terrestrial biomass. Due to the structural and monomeric heterogeneity of lignin, it is recalcitrant thermochemical and biological valorization methods. Converting lignin to value-added products via sustainable and cost-effective pathways will reduce waste and add value to future cellulosic biorefineries. Biological methods for lignin valorization (e.g. lignin degrading enzymes or microbes) is limited by low lignin solubility in biocompatible solvents, resulting in low product yield. Recent reports on biocatalysts for lignin valorization have focused on the lignolytic multicopper oxidase laccase, …