Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

University of Kentucky

Theses and Dissertations--Chemical and Materials Engineering

2020

Articles 1 - 14 of 14

Full-Text Articles in Engineering

Microfiltration Membrane Pore Functionalization Approaches For Chloro-Organic Remediation To Heavy Metal Sorption, Mohammad Saiful Islam Jan 2020

Microfiltration Membrane Pore Functionalization Approaches For Chloro-Organic Remediation To Heavy Metal Sorption, Mohammad Saiful Islam

Theses and Dissertations--Chemical and Materials Engineering

Microfiltration polyvinylidene fluoride (PVDF) membranes have distinct advantage for open structure in terms of high internal surface area and ease of access in the pore domain. Functionalization of PVDF membranes with different functional groups (-COOH, -OH, -SH) enables responsive (pH, temperature) properties to membrane, tuning of effective pore size, controlling permeate flux. PVDF microfiltration membrane functionalization with suitable responsive polymer such as poly acrylic acid (PAA) to incorporate carboxyl (-COOH) group enables further modification of functionalized PAA-PVDF membranes for different application ranging from catalysis, bio reactor to heavy metal sorption platform. As a catalytic reactor bed, this PAA-PVDF membranes are …


A Framework For Heterologous Biosynthesis Of Natural Products In Mammalian Cells Via Polymer-Mediated Transfections, Logan Warriner Jan 2020

A Framework For Heterologous Biosynthesis Of Natural Products In Mammalian Cells Via Polymer-Mediated Transfections, Logan Warriner

Theses and Dissertations--Chemical and Materials Engineering

With the promise to treat a multi-faceted list of serious inherited and acquired diseases, such as cancer, neurodegenerative and infectious diseases, and inherited genetic indications, gene therapy has continued to push the boundaries of traditional medicine since its earliest implementation. While much progress has been made, clinical success has largely remained elusive. Immunogenicity, difficulty producing commercially relevant quantities, and having a limited genetic payload still limits the ability of viruses to act as directed delivery agents for genetic material. As such, researchers have turned to cationic synthetic materials as a means of delivering nucleic acids, which can circumvent the immune …


Polymeric Nanocomposite Membranes With Phosphorene Based Pore Fillers For Fouling Control, Joyner Eke Jan 2020

Polymeric Nanocomposite Membranes With Phosphorene Based Pore Fillers For Fouling Control, Joyner Eke

Theses and Dissertations--Chemical and Materials Engineering

Phosphorene is a two-dimensional material exfoliated from bulk phosphorus. Specifically, relevant to the field of membrane science, the band gap of phosphorene provides it with potential photocatalytic properties, which could be explored in making reactive membranes able to control the accumulation of compounds on the surface during filtration, or fouling. Another reason phosphorene is a promising candidate as a membrane material additive is due to its catalytic properties which can potentially destroy foulants on the membrane surface.

The first goal of this study was to develop an innovative and robust membrane able to control and reverse fouling with minimal changes …


Bimetallic Nanoparticles Integrated Membranes For Groundwater Remediation: Synthesis, Characterization And Applications, Hongyi Wan Jan 2020

Bimetallic Nanoparticles Integrated Membranes For Groundwater Remediation: Synthesis, Characterization And Applications, Hongyi Wan

Theses and Dissertations--Chemical and Materials Engineering

The detoxification of chlorinated organics from groundwater, such as trichloroethylene (TCE), tetrachloroethylene (PCE), polychlorinated biphenyl (PCB) and carbon tetrachloride (CTC), is a challenging area. Reductive dechlorination has been investigated using iron and iron-based nanoparticles, such as bare Fe, sulfidized Fe (S-Fe) and palladized Fe (Pd-Fe). However, issues including particle agglomeration, difficulties in recycling and particle leaching have been reported to hinder the application and wide usage of these techniques. The integration of nanoparticles and membranes can address these issues because of the large surface area, stability, and the potential for versatile functionalities. In this study, commercial polyvinylidene difluoride (PVDF) microfiltration …


Characterization And Electrochemical Performance Of Dopamine-Sensitized Titania Thin Films, Joshua Garay Jan 2020

Characterization And Electrochemical Performance Of Dopamine-Sensitized Titania Thin Films, Joshua Garay

Theses and Dissertations--Chemical and Materials Engineering

Sensitization of mesoporous titania films with dopamine and polydopamine for visible light photoelectrochemical activity is investigated. Sensitization effectiveness is compared with 8 mM dopamine solutions of varying pH (acidic, basic, and neutral), as well as with a basic polydopamine solution. Vibrational changes due to dopamine attachment are determined from detached powders by Fourier-transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA) is used to quantify organics attached. X-ray photoelectron spectroscopy (XPS) of intact films probes the chemically induced charge shift from dopamine attachment. Cyclic voltammetry identifies the irreversible dopamine oxidation and tin reduction voltages. Finally, chronoamperometric curves are used to compare …


Silica Nanoporous Confinement Effects On Ionic Liquid Properties For Better Design Of Small Molecule Separation, Electrochemical Devices And Drug Delivery, Yuxin He Jan 2020

Silica Nanoporous Confinement Effects On Ionic Liquid Properties For Better Design Of Small Molecule Separation, Electrochemical Devices And Drug Delivery, Yuxin He

Theses and Dissertations--Chemical and Materials Engineering

Silica nanoconfinement provides a high level of control of ionic liquids (ILs) in localizing catalysts, creating distinct environment for tuning reactivity and controlling the partition of solvents, reactants and products. Silica thin films with two different pore sizes (2.5 nm and 8 nm) were synthesized to study the effect of nanopore confinement on ionic liquids 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]), and 1-butyl-3-methylimidazolium chloride ([BMIM][Cl]). Silica thin films with accessible 8 nm pore diameters were synthesized using evaporation-induced self-assembly (EISA) with Pluronic P123 as templating surfactant on a chemically neutral modified substrate. The silica films with similar orthogonal aligned mesostructured but …


The Development Of Temperature And Ph Responsive Hydrogels And Membranes For Selective Sorption Of Perfluoroorganics And Nanoparticle Integrated Catalytic Degradation Of Pcb, Anthony Saad Jan 2020

The Development Of Temperature And Ph Responsive Hydrogels And Membranes For Selective Sorption Of Perfluoroorganics And Nanoparticle Integrated Catalytic Degradation Of Pcb, Anthony Saad

Theses and Dissertations--Chemical and Materials Engineering

The functionalization and use of responsive and catalytic polymeric membranes and materials were explored for contaminant capture and degradation. While membranes have a wide variety of uses across multiple industries, the inclusion of materials that are temperature and pH responsive in the membrane pore domain yields a wide range of applications and possibilities for water treatment. Temperature and pH responsive polymers, as well as controlled nanostructured materials, were synthesized in membrane pores for advanced adsorption-desorption and catalytic treatment of emerging organic contaminants in water. In this study, supported by the NIEHS, poly-N-isopropylacrylamide (PNIPAm) was used as a model thermo-responsive polymer, …


Effects Of Hole Transporting Layers And Surface Ligands On Interface Energetics And Photovoltaic Performance Of Methylammonium Lead Iodide Perovskites, So Min Park Jan 2020

Effects Of Hole Transporting Layers And Surface Ligands On Interface Energetics And Photovoltaic Performance Of Methylammonium Lead Iodide Perovskites, So Min Park

Theses and Dissertations--Chemical and Materials Engineering

Organic metal halide perovskites are promising materials for various optoelectronic device applications such as light emitting diodes (LED) and photovoltaic (PV) cells. Perovskite solar cells (PSCs) have shown dramatic increases in power conversion efficiency over the previous ten years, far exceeding the rate of improvement of all other PV technologies. PSCs have attracted significant attention due to their strong absorbance throughout the visible region, high charge carrier mobilities, color tunability, and ability to make ultralight weight devices. However, organic metal halide perovskites still face several challenges. For example, their environmental stability issue must be overcome to enable widespread commercialization. Meeting …


Effect Of Silica Nanoconfinement Of Lipid Bilayers On Its Phase Transition And On The Colloidal Stability Of Silica Nanoparticles, Aniruddha Atul Shirodkar Jan 2020

Effect Of Silica Nanoconfinement Of Lipid Bilayers On Its Phase Transition And On The Colloidal Stability Of Silica Nanoparticles, Aniruddha Atul Shirodkar

Theses and Dissertations--Chemical and Materials Engineering

In this work, we incorporated 4-(N-Boc-aminometyl) phenylboronic acid (BA), at different concentrations, into 1,2-dipalmitoyl-sn-glycero-3- phosphocholine (DPPC) bilayers confined within nanopores of two different mean pore diameters of 7.4 nm and 11.7 nm of micron sized silica particles. The confinement of DPPC into nanopores resulted in the depression in the main phase transition temperatures compared to the liposomal system. The addition of BA was found to induce disruptions in the acyl chains of the lipid molecules at all concentrations of the solute. The lipid bilayer cooperativity was found to be higher in the confined systems compared to the liposomal systems despite …


Fabrication, Characterization And Applications Of Highly Conductive Wet-Spun Pedot:Pss Fibers, Ruben Sarabia Riquelme Jan 2020

Fabrication, Characterization And Applications Of Highly Conductive Wet-Spun Pedot:Pss Fibers, Ruben Sarabia Riquelme

Theses and Dissertations--Chemical and Materials Engineering

Smart electronic textiles cross conventional uses to include functionalities such as light emission, health monitoring, climate control, sensing, storage and conversion of energy, etc. New fibers and yarns that are electrically conductive and mechanically robust are needed as fundamental building blocks for these next generation textiles.

Conjugated polymers are promising candidates in the field of electronic textiles because they are made of earth-abundant, inexpensive elements, have good mechanical properties and flexibility, and can be processed using low-cost large-scale solution processing methods. Currently, the main method to fabricate electrically conductive fibers or yarns from conjugated polymers is the deposition of the …


Nanostructured Metal Thin Films As Components Of Composite Membranes For Separations And Catalysis, Michael J. Detisch Jan 2020

Nanostructured Metal Thin Films As Components Of Composite Membranes For Separations And Catalysis, Michael J. Detisch

Theses and Dissertations--Chemical and Materials Engineering

Novel metallic thin film composite membranes are synthesized and evaluated in this work for improved separations and catalysis capabilities. Advances in technology that allow for improved membrane performance in solvent separations are desirable for low molecular weight organic separation applications such as those in pharmaceutical industries. Additionally, the introduction of catalytic materials into membrane systems allow for optimization of complex processes in a single step. By adding a nanostructured metallic thin film to its surface, a polymer membrane may be modified to exhibit these improved properties. Using magnetron sputtering, thin metal films may be deposited on commercially available membranes to …


Ab Initio Investigation On The Surface Chemistry Of Functionalized Titania Membranes, Evan Hyde Jan 2020

Ab Initio Investigation On The Surface Chemistry Of Functionalized Titania Membranes, Evan Hyde

Theses and Dissertations--Chemical and Materials Engineering

Titania (titanium dioxide) is a metal oxide which has recently been investigated as a photocatalyst, most commonly for use in hydrolysis, which absorbs mostly in the UV range. However, the range of absorption can be shifted to fall within the visible light range either by doping or by functionalizing the surface with atomic or molecular adsorbates. Over the course of this research, a series of Density Functional Theory (DFT) calculations are performed to ascertain the effects of these different methods on the photocatalytic performance of titania. While the effects of nitrogen doping and oxygen vacancies are well known, more recent …


A Thermodynamic And Feasibility Study Of Green Solvents For The Fabrication Of Water Treatment Membranes, Xiaobo Dong Jan 2020

A Thermodynamic And Feasibility Study Of Green Solvents For The Fabrication Of Water Treatment Membranes, Xiaobo Dong

Theses and Dissertations--Chemical and Materials Engineering

Nonsolvent induced phase separation (NIPS) has been widely used to fabricate polymeric membranes. In NIPS, a polymer is dissolved in a solvent to form a dope solution, which is then cast on a substrate and immersed in a nonsolvent bath, where phase inversion occurs. Petroleum-derived organic solvents, such as N-Methyl-2-Pyrrolidone (NMP) and Dimethylacetamide (DMAc), have been traditionally used to fabricate polymeric membranes via NIPS. However, these solvents may have negative impacts on environmental and human health; therefore, using greener and less toxic solvents, preferably derived from biomass, is of great interest to make membrane fabrication sustainable. In this dissertation, two …


Understanding And Mitigating The Electrochemical-Mechanical Degradation Of High Capacity Battery Electrodes, Dingying Dang Jan 2020

Understanding And Mitigating The Electrochemical-Mechanical Degradation Of High Capacity Battery Electrodes, Dingying Dang

Theses and Dissertations--Chemical and Materials Engineering

Lithium-ion batteries (LIBs) with high energy density and cycling stability play a critical role in developing electric vehicle (EV) and grid energy storage techniques. The electrochemical performance of LIBs can be improved by using high capacity positive (e.g., LiNi1/3Mn1/3Co1/3O2, i.e., NMC111) and negative (e.g., silicon) electrodes; both, however, experience severe electrochemical-mechanical degradation caused by the lithiation/delithiation induced volume changes. Understanding mechanical degradation mechanisms and their relationships with the capacity fading of electrodes is important for improving the cycling stability of electrodes as well as optimizing the design of electrodes with high capacity …