Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

University of Kentucky

Nanoscience and Nanotechnology

Keyword
Publication Year
Publication
Publication Type

Articles 1 - 30 of 68

Full-Text Articles in Engineering

Application Of Multi-Scale Computational Techniques To Complex Materials Systems, Mujan N. Seif Jan 2023

Application Of Multi-Scale Computational Techniques To Complex Materials Systems, Mujan N. Seif

Theses and Dissertations--Chemical and Materials Engineering

The applications of computational materials science are ever-increasing, connecting fields far beyond traditional subfields in materials science. This dissertation demonstrates the broad scope of multi-scale computational techniques by investigating multiple unrelated complex material systems, namely scandate thermionic cathodes and the metallic foam component of micrometeoroid and orbital debris (MMOD) shielding. Sc-containing "scandate" cathodes have been widely reported to exhibit superior properties compared to previous thermionic cathodes; however, knowledge of their precise operating mechanism remains elusive. Here, quantum mechanical calculations were utilized to map the phase space of stable, highly-faceted and chemically-complex W nanoparticles, accounting for both finite temperature and chemical …


Green-Route Synthesis Of Halide Perovskite Materials And Their Optoelectronic Properties, Xiaobing Tang Jan 2022

Green-Route Synthesis Of Halide Perovskite Materials And Their Optoelectronic Properties, Xiaobing Tang

Theses and Dissertations--Chemical and Materials Engineering

Colloidal semiconductor quantum dots (QDs), also called as nanocrystals (NCs), are a class of functional materials with extraordinary properties, which are different from their bulk counterparts and benefit from their exclusive quantum confinement (size) effect. Semiconductor exhibits the quantum confinement effect when the characteristic size of the semiconductor is comparable to or smaller than the de Broglie wavelength of the electron wave function and/or the exciton Bohr diameter of the bulk semiconductor. In recent years, metal halide perovskite NCs, as next-generation semiconductor materials for lighting and display, have aroused a wide attention due to their excellent optoelectronic properties. However, traditional …


An Ultrabroadband 3d Achromatic Metalens, Fatih Balli, Mansoor A. Sultan, Aytekin Ozdemir, J. Todd Hastings Jan 2021

An Ultrabroadband 3d Achromatic Metalens, Fatih Balli, Mansoor A. Sultan, Aytekin Ozdemir, J. Todd Hastings

Electrical and Computer Engineering Faculty Publications

We design and fabricate ultra-broadband achromatic metalenses operating from the visible into the short-wave infrared, 450–1700 nm, with diffraction-limited performance. A hybrid 3D architecture, which combines nanoholes with a phase plate, allows realization in low refractive index materials. As a result, two-photon lithography can be used for prototyping while molding can be used for mass production. Experimentally, a 0.27 numerical aperture (NA) metalens exhibits 60% average focusing efficiency and 6% maximum focal length error over the entire bandwidth. In addition, a 200 μm diameter, 0.04 NA metalens was used to demonstrate achromatic imaging over the same broad spectral range. These …


Development Of Novel Polymeric Materials For Their Application In Monitoring And Remediation Of Environmental Pollutants, Rishabh Shah Jan 2021

Development Of Novel Polymeric Materials For Their Application In Monitoring And Remediation Of Environmental Pollutants, Rishabh Shah

Theses and Dissertations--Chemical and Materials Engineering

Remediation of environmental pollutants from water is one of the major challenges in the 21st century. Utilizing novel polymeric materials to accomplish this challenge has garnered a lot of interest in recent times. Flexibility in synthesizing as well as functionalizing makes them attractive for their application in pollutant remediation. This work is based on development and characterization of novel crosslinked polymeric as well as linear polymeric materials from biphenyl-based monomers, biphenyl based crosslinker and a temperature responsive monomer (Nisopropylacrylamide (NIPAAm)) for their application in remediation of toxic pollutants such as polychlorinated biphenyls (PCBs), polyaromatic hydrocarbons (PAHs) and iron oxide nanoparticle …


Synthesis Of Metal Oxide Surface And Interface Arrays By A Combined Solid-Liquid- Vapor/Vapor-Liquid-Solid Approach, Alexandra J. Riddle Jan 2020

Synthesis Of Metal Oxide Surface And Interface Arrays By A Combined Solid-Liquid- Vapor/Vapor-Liquid-Solid Approach, Alexandra J. Riddle

Theses and Dissertations--Chemistry

This project was motivated by an in situ heating experiment in the transmission electron microscope (TEM) in which gold (Au) nanoparticles were observed to dissolve tin dioxide (SnO2) nanowires (NWs) under vacuum. The explanation for this observation was that the high-temperature and low-pressure environment of the TEM caused the reverse reaction of the well-known vapor-liquid-solid (VLS) method commonly used to grow NWs. In the VLS process, a metal catalyst absorbs reactant vapor until it becomes supersaturated. The precipitation of the NW occurs at the liquid-solid interface, which ceases when there is no longer reactant vapor, and the diameter of the …


Coarse-Grained Dynamically Accurate Simulations Of Ionic Liquids At Vacuum-Interface, Tyler D. Stoffel Jan 2020

Coarse-Grained Dynamically Accurate Simulations Of Ionic Liquids At Vacuum-Interface, Tyler D. Stoffel

Theses and Dissertations--Mechanical Engineering

Ionic liquids, possessing improved properties in many areas of technical application, are excellent candidates as components in development of next-generation technology, including ultra-high energy batteries. If they are thus applied, however, extensive interfacial analysis of any selected ionic configuration will likely be required. Molecular dynamics (MD) provides an advantageous route by which this may be accomplished, but can fall short in observing some phenomena only present at larger time/length scales than it can simulate. Often times this is approached by coarse-graining (CG), with which scope of simulation can be significantly increased. However, coarse-grained MD systems are generally known to produce …


Nanostructured Metal Thin Films As Components Of Composite Membranes For Separations And Catalysis, Michael J. Detisch Jan 2020

Nanostructured Metal Thin Films As Components Of Composite Membranes For Separations And Catalysis, Michael J. Detisch

Theses and Dissertations--Chemical and Materials Engineering

Novel metallic thin film composite membranes are synthesized and evaluated in this work for improved separations and catalysis capabilities. Advances in technology that allow for improved membrane performance in solvent separations are desirable for low molecular weight organic separation applications such as those in pharmaceutical industries. Additionally, the introduction of catalytic materials into membrane systems allow for optimization of complex processes in a single step. By adding a nanostructured metallic thin film to its surface, a polymer membrane may be modified to exhibit these improved properties. Using magnetron sputtering, thin metal films may be deposited on commercially available membranes to …


Enhanced Crystallinity Of Triple-Cation Perovskite Film Via Doping Nh4Scn, Ziji Liu, Detao Liu, Hao Chen, Long Ji, Hualin Zheng, Yiding Gu, Feng Wang, Zhi Chen, Shibin Li Sep 2019

Enhanced Crystallinity Of Triple-Cation Perovskite Film Via Doping Nh4Scn, Ziji Liu, Detao Liu, Hao Chen, Long Ji, Hualin Zheng, Yiding Gu, Feng Wang, Zhi Chen, Shibin Li

Electrical and Computer Engineering Faculty Publications

The trap-state density in perovskite films largely determines the photovoltaic performance of perovskite solar cells (PSCs). Increasing the crystal grain size in perovskite films is an effective method to reduce the trap-state density. Here, we have added NH4SCN into perovskite precursor solution to obtain perovskite films with an increased crystal grain size. The perovskite with increased crystal grain size shows a much lower trap-state density compared with reference perovskite films, resulting in an improved photovoltaic performance in PSCs. The champion photovoltaic device has achieved a power conversion efficiency of 19.36%. The proposed method may also impact other optoelectronic …


Nanogaps On Atomically Thin Materials As Non-Volatile Read/Writable Memory Devices, Douglas Robert Strachan, Abhishek Sundararajan, Mathias Joseph Boland Aug 2019

Nanogaps On Atomically Thin Materials As Non-Volatile Read/Writable Memory Devices, Douglas Robert Strachan, Abhishek Sundararajan, Mathias Joseph Boland

Physics and Astronomy Faculty Patents

The present invention relates to the presence of nanogaps across a metal dispersed over an atomically-thin material, such that the nanogap exposes the atomically-thin material. The resulting device offers an ultra-short gap with ballistic transport and demonstrated switching in the presence of a gate or dielectric material in close proximity to the channel.


Thermal Interface Material, Matthew Collins Weisenberger, John Davis Craddock Jul 2019

Thermal Interface Material, Matthew Collins Weisenberger, John Davis Craddock

Center for Applied Energy Research Faculty Patents

A flexible sheet of aligned carbon nanotubes includes an array of aligned nanotubes in a free standing film form not adhered to the synthesis substrate, with a matrix infiltrated interstitially into the nanotube array with access to the nanotube tips from both the top and bottom. That is, the infiltrant is purposely limited from over-filling or coating one or both exterior top and/or bottom surfaces of the array, blocking access to the tips. A typical matrix is a polymer material.


Composite Membranes Derived From Cellulose And Lignin Sulfonate For Selective Separations And Antifouling Aspects, Andrew Steven Colburn, Ronald J. Vogler, Aum Patel, Mariah Bezold, John D. Craven, Chunqing Liu, Dibakar Bhattacharyya Jun 2019

Composite Membranes Derived From Cellulose And Lignin Sulfonate For Selective Separations And Antifouling Aspects, Andrew Steven Colburn, Ronald J. Vogler, Aum Patel, Mariah Bezold, John D. Craven, Chunqing Liu, Dibakar Bhattacharyya

Chemical and Materials Engineering Faculty Publications

Cellulose-based membrane materials allow for separations in both aqueous solutions and organic solvents. The addition of nanocomposites into cellulose structure is facilitated through steric interaction and strong hydrogen bonding with the hydroxy groups present within cellulose. An ionic liquid, 1-ethyl-3-methylimidazolium acetate, was used as a solvent for microcrystalline cellulose to incorporate graphene oxide quantum dots into cellulose membranes. In this work, other composite materials such as, iron oxide nanoparticles, polyacrylic acid, and lignin sulfonate have all been uniformly incorporated into cellulose membranes utilizing ionic liquid cosolvents. Integration of iron into cellulose membranes resulted in high selectivity (> 99%) of neutral …


Synthesis Of Metal Oxide Surfaces And Interfaces With Crystallographic Control Using Solid-Liquid-Vapor Etching And Vapor-Liquid-Solid Growth, Beth S. Guiton, Lei Yu Jun 2019

Synthesis Of Metal Oxide Surfaces And Interfaces With Crystallographic Control Using Solid-Liquid-Vapor Etching And Vapor-Liquid-Solid Growth, Beth S. Guiton, Lei Yu

Chemistry Faculty Patents

The present invention provides integrated nanostructures comprising a single-crystalline matrix of a material A containing aligned, single-crystalline nanowires of a material B, with well-defined crystallographic interfaces are disclosed. The nanocomposite is fabricated by utilizing metal nanodroplets in two subsequent catalytic steps: solid-liquid-vapor etching, followed by vapor-liquid-solid growth. The first etching step produces pores, or “negative nanowires” within a single-crystalline matrix, which share a unique crystallographic direction, and are therefore aligned with respect to one another. Further, since they are contained within a single, crystalline, matrix, their size and spacing can be controlled by their interacting strain fields, and the array …


Triperyleno[3,3,3]Propellane Triimides: Achieving A New Generation Of Quasi-D3h Symmetric Nanostructures In Organic Electronics, Lingling Lv, Josiah Roberts, Chengyi Xiao, Zhenmei Jia, Wei Jiang, Chad Risko, Lei Zhang May 2019

Triperyleno[3,3,3]Propellane Triimides: Achieving A New Generation Of Quasi-D3h Symmetric Nanostructures In Organic Electronics, Lingling Lv, Josiah Roberts, Chengyi Xiao, Zhenmei Jia, Wei Jiang, Chad Risko, Lei Zhang

Chemistry Faculty Publications

Rigid three-dimensional (3D) polycyclic aromatic hydrocarbons (PAHs), in particular 3D nanographenes, have garnered interest due to their potential use in semiconductor applications and as models to study through-bond and through-space electronic interactions. Herein we report the development of a novel 3D-symmetric rylene imide building block, triperyleno[3,3,3]propellane triimides (6), that possesses three perylene monoimide subunits fused on a propellane. This building block shows several promising characteristics, including high solubility, large π-surfaces, electron-accepting capabilities, and a variety of reactive sites. Further, the building block is compatible with different reactions to readily yield quasi-D3h symmetric nanostructures (9, …


Effect Of Crystallization Modes In Tips-Pentacene/Insulating Polymer Blends On The Gas Sensing Properties Of Organic Field-Effect Transistors, Jung Hun Lee, Yena Seo, Yeong Don Park, John E. Anthony, Do Hun Kwak, Jung Ah Lim, Sunglim Ko, Ho Won Jang, Kilwon Cho, Wi Hyoung Lee Jan 2019

Effect Of Crystallization Modes In Tips-Pentacene/Insulating Polymer Blends On The Gas Sensing Properties Of Organic Field-Effect Transistors, Jung Hun Lee, Yena Seo, Yeong Don Park, John E. Anthony, Do Hun Kwak, Jung Ah Lim, Sunglim Ko, Ho Won Jang, Kilwon Cho, Wi Hyoung Lee

Center for Applied Energy Research Faculty and Staff Publications

Blending organic semiconductors with insulating polymers has been known to be an effective way to overcome the disadvantages of single-component organic semiconductors for high-performance organic field-effect transistors (OFETs). We show that when a solution processable organic semiconductor (6,13-bis(triisopropylsilylethynyl)pentacene, TIPS-pentacene) is blended with an insulating polymer (PS), morphological and structural characteristics of the blend films could be significantly influenced by the processing conditions like the spin coating time. Although vertical phase-separated structures (TIPS-pentacene-top/PS-bottom) were formed on the substrate regardless of the spin coating time, the spin time governed the growth mode of the TIPS-pentacene molecules that phase-separated and crystallized on the …


Towards The Rational Design And Application Of Polymers For Gene Therapy: Internalization And Intracellular Fate, Landon Alexander Mott Jan 2019

Towards The Rational Design And Application Of Polymers For Gene Therapy: Internalization And Intracellular Fate, Landon Alexander Mott

Theses and Dissertations--Chemical and Materials Engineering

Gene therapy is an approach for the treatment of acquired cancers, infectious disease, degenerative disease, and inherited genetic indications. Developments in the fields of immunotherapies and CRISPR/Cas9 genome editing are revitalizing the efforts to move gene therapy to the forefront of modern medicine. However, slow progress and poor clinical outcomes have plagued the field due to regulatory and safety concerns associated with the flagship delivery vector, the recombinant virus. Immunogenicity and poor transduction in certain cell types severely limits the utility of viruses as a delivery agent of nucleic acids. As a result, significant efforts are being made to develop …


Nanoharvesting And Delivery Of Bioactive Materials Using Engineered Silica Nanoparticles, Md Arif Khan Jan 2019

Nanoharvesting And Delivery Of Bioactive Materials Using Engineered Silica Nanoparticles, Md Arif Khan

Theses and Dissertations--Chemical and Materials Engineering

Mesoporous silica nanoparticles (MSNPs) possess large surface areas and ample pore space that can be readily modified with specific functional groups for targeted binding of bioactive materials to be transported through cellular barriers. Engineered silica nanoparticles (ESNP) have been used extensively to deliver bio-active materials to target intracellular sites, including as non-viral vectors for nucleic acid (DNA/RNA) delivery such as for siRNA induced interference. The reverse process guided by the same principles is called “nanoharvesting”, where valuable biomolecules are carried out and separated from living and functioning organisms using nano-carriers. This dissertation focuses on ESNP design principles for both applications. …


Scanning Probe Microscopy Measurements On 2d Materials And Iridates, Armin Ansary Jan 2019

Scanning Probe Microscopy Measurements On 2d Materials And Iridates, Armin Ansary

Theses and Dissertations--Physics and Astronomy

In the past two decades, there has been a quest to understand and utilize novel materials such as iridates and two-dimensional (2D) materials. These classes of materials show a lot of interesting properties both in theoretical predictions as well as experimental results. Physical properties of some of these materials have been investigated using scanning probe measurements, along with other techniques.

One-dimensional (1D) catalytic etching was investigated in few-layer hexagonal boron nitride (hBN) films. Etching of hBN was shown to share several similarities with that of graphitic films. As in graphitic films, etch tracks in hBN commenced at film edges and …


The Fabrication And Characterization Of Metal Oxide Nanoparticles Employed In Environmental Toxicity And Polymeric Nanocomposite Applications, Matthew Logan Hancock Jan 2019

The Fabrication And Characterization Of Metal Oxide Nanoparticles Employed In Environmental Toxicity And Polymeric Nanocomposite Applications, Matthew Logan Hancock

Theses and Dissertations--Chemical and Materials Engineering

Ceria (cerium oxide) nanomaterials, or nanoceria, have commercial catalysis and energy storage applications. The cerium atoms on the surface of nanoceria can store or release oxygen, cycling between Ce3+ and Ce4+, and can therefore act as a therapeutic to relieve oxidative stress within living systems. Nanoceria dissolution is present in acidic environments in vivo. In order to accurately define the fate of nanoceria in vivo, nanoceria dissolution or stabilization is observed in vitro using acidic aqueous environments.

Nanoceria stabilization is a known problem even during its synthesis; in fact, a carboxylic acid, citric acid, is …


Determining The Degree Of [001] Preferred Growth Of Ni(Oh)2 Nanoplates, Taotao Li, Ning Dang, Wanggang Zhang, Wei Liang, Fuqian Yang Nov 2018

Determining The Degree Of [001] Preferred Growth Of Ni(Oh)2 Nanoplates, Taotao Li, Ning Dang, Wanggang Zhang, Wei Liang, Fuqian Yang

Chemical and Materials Engineering Faculty Publications

Determining the degree of preferred growth of low-dimensional materials is of practical importance for the improvement of the synthesis methods and applications of low-dimensional materials. In this work, three different methods are used to analyze the degree of preferred growth of the Ni(OH)2 nanoplates synthesized without the use of a complex anion. The results suggest that the preferred growth degree of the Ni(OH)2 nanoplates calculated by the March parameter and the expression given by Zolotoyabko, which are based on the analysis and texture refinement of the X-ray diffraction pattern, are in good accordance with the results measured by …


Self-Cleaning Nanocomposite Membranes With Phosphorene-Based Pore Fillers For Water Treatment, Joyner Eke, Katherine Elder, Isabel Escobar Sep 2018

Self-Cleaning Nanocomposite Membranes With Phosphorene-Based Pore Fillers For Water Treatment, Joyner Eke, Katherine Elder, Isabel Escobar

Chemical and Materials Engineering Faculty Publications

Phosphorene is a two-dimensional material exfoliated from bulk phosphorus and it possesses a band gap. Specifically, relevant to the field of membrane science, the band gap of phosphorene provides it with potential photocatalytic properties, which could be explored in making reactive membranes that can self-clean. The goal of this study was to develop an innovative and robust membrane that is able to control and reverse fouling with minimal changes in membrane performance. To this end, for the first time, membranes have been embedded with phosphorene. Membrane modification was verified by the presence of phosphorus on membranes, along with changes in …


Engineered Nanoparticles Interact With Nutrients To Intensify Eutrophication In A Wetland Ecosystem Experiment, Marie Simonin, Benjamin P. Colman, Steven M. Anderson, Ryan S. King, Matthew T. Ruis, Astrid Avellan, Christina M. Bergemann, Brittany G. Perrotta, Nicholas K. Geitner, Mengchi Ho, Belen De La Barrera, Jason M. Unrine, Gregory V. Lowry, Curtis J. Richardson, Mark R. Wiesner, Emily S. Bernhardt Sep 2018

Engineered Nanoparticles Interact With Nutrients To Intensify Eutrophication In A Wetland Ecosystem Experiment, Marie Simonin, Benjamin P. Colman, Steven M. Anderson, Ryan S. King, Matthew T. Ruis, Astrid Avellan, Christina M. Bergemann, Brittany G. Perrotta, Nicholas K. Geitner, Mengchi Ho, Belen De La Barrera, Jason M. Unrine, Gregory V. Lowry, Curtis J. Richardson, Mark R. Wiesner, Emily S. Bernhardt

Plant and Soil Sciences Faculty Publications

Despite the rapid rise in diversity and quantities of engineered nanomaterials produced, the impacts of these emerging contaminants on the structure and function of ecosystems have received little attention from ecologists. Moreover, little is known about how manufactured nanomaterials may interact with nutrient pollution in altering ecosystem productivity, despite the recognition that eutrophication is the primary water quality issue in freshwater ecosystems worldwide. In this study, we asked two main questions: (1) To what extent do manufactured nanoparticles affect the biomass and productivity of primary producers in wetland ecosystems? (2) How are these impacts mediated by nutrient pollution? To address …


Oxidation Of N-Doped Multiwalled Carbon Nanotubes And Formation Of Discontinuous Spiraled Carbon Nanoribbons, Aman Preet Kaur, Mark S. Meier, Rodney Andrews, Dali Qian Jun 2018

Oxidation Of N-Doped Multiwalled Carbon Nanotubes And Formation Of Discontinuous Spiraled Carbon Nanoribbons, Aman Preet Kaur, Mark S. Meier, Rodney Andrews, Dali Qian

Chemistry Faculty Publications

The effects of five commonly used wet chemical oxidations were studied for the extent of oxidation of graphitized nitrogen-doped multiwalled carbon nanotubes (N-MWCNTs). KMnO4/ H2SO4 was the most potent oxidant, as it produced the highest fraction of oxygen-containing functional groups. Electron microscopy studies showed that the treatment of annealed N-MWCNTs (G-N-MWCNTs) with H2SO4/HNO3 and H2SO4/KMnO4 mixtures leads to interesting spiraled ribbon textures. A structural model, involving the stacking of coiled subunits to form a discontinuous carbon nanoribbon rather than a continuous ribbon is proposed to …


Nanoparticle-Mediated Therapeutic Agent Delivery For Treating Metastatic Breast Cancer—Challenges And Opportunities, Yunfei Li, Brock Humphries, Chengfeng Yang, Zhishan Wang May 2018

Nanoparticle-Mediated Therapeutic Agent Delivery For Treating Metastatic Breast Cancer—Challenges And Opportunities, Yunfei Li, Brock Humphries, Chengfeng Yang, Zhishan Wang

Toxicology and Cancer Biology Faculty Publications

Breast cancer (BC) is the second leading cause of cancer-related death in American women and more than 90% of BC-related death is caused by metastatic BC (MBC). This review stresses the limited success of traditional therapies as well as the use of nanomedicine for treating MBC. Understanding the biological barriers of MBC that nanoparticle in vivo trafficking must overcome could provide valuable new insights for translating nanomedicine from the bench side to the bedside. A view about nanomedicine applied in BC therapy has been summarized with their present status, which is gaining attention in the clinically-applied landscape. The progressions of …


Advancing The Understanding Of Environmental Transformations, Bioavailability And Effects Of Nanomaterials, An International Us Environmental Protection Agency—Uk Environmental Nanoscience Initiative Joint Program, Mitch M. Lasat, Kian Fan Chung, Jamie Lead, Steve Mcgrath, Richard J. Owen, Sophie Rocks, Jason M. Unrine, Junfeng Zhang Apr 2018

Advancing The Understanding Of Environmental Transformations, Bioavailability And Effects Of Nanomaterials, An International Us Environmental Protection Agency—Uk Environmental Nanoscience Initiative Joint Program, Mitch M. Lasat, Kian Fan Chung, Jamie Lead, Steve Mcgrath, Richard J. Owen, Sophie Rocks, Jason M. Unrine, Junfeng Zhang

Plant and Soil Sciences Faculty Publications

Nanotechnology has significant economic, health, and environmental benefits, including renewable energy and innovative environmental solutions. Manufactured nanoparticles have been incorporated into new materials and products because of their novel or enhanced properties. These very same properties also have prompted concerns about the potential environmental and human health hazard and risk posed by the manufactured nanomaterials. Appropriate risk management responses require the development of models capable of predicting the environmental and human health effects of the nanomaterials. Development of predictive models has been hampered by a lack of information concerning the environmental fate, behavior and effects of manufactured nanoparticles. The United …


Method For Production Of Germanium Nanowires Encapsulated Within Multi-Walled Carbon Nanotubes, Mark Crocker, Rodney Andrews, Arumugam Pandurangan, Dali Qian Apr 2018

Method For Production Of Germanium Nanowires Encapsulated Within Multi-Walled Carbon Nanotubes, Mark Crocker, Rodney Andrews, Arumugam Pandurangan, Dali Qian

Center for Applied Energy Research Faculty Patents

A method is provided for producing germanium nanowires encapsulated within multi-walled carbon nanotubes. The method includes the steps of performing chemical vapor deposition using a combined germanium and carbon source having a general formula of GeR(4-x)Lx, where x=0, 1, 2, or 3; R is selected from a group consisting of alkyl, cycloalkyl or aryl and L=hydrogen, halide or alkoxide and growing germanium nanowires encapsulated within multi-walled carbon nanotubes on a substrate. A reaction product of that method or process is also provided.


Dynamics Of Singlet Fission And Electron Injection In Self-Assembled Acene Monolayers On Titanium Dioxide, Natalie A. Pace, Dylan H. Arias, Devin B. Granger, Steven Christensen, John E. Anthony, Justin C. Johnson Mar 2018

Dynamics Of Singlet Fission And Electron Injection In Self-Assembled Acene Monolayers On Titanium Dioxide, Natalie A. Pace, Dylan H. Arias, Devin B. Granger, Steven Christensen, John E. Anthony, Justin C. Johnson

Chemistry Faculty Publications

We employ a combination of linear spectroscopy, electrochemistry, and transient absorption spectroscopy to characterize the interplay between electron transfer and singlet fission dynamics in polyacene-based dyes attached to nanostructured TiO2. For triisopropyl silylethynyl (TIPS)-pentacene, we find that the singlet fission time constant increases to 6.5 ps on a nanostructured TiO2 surface relative to a thin film time constant of 150 fs, and that triplets do not dissociate after they are formed. In contrast, TIPS-tetracene singlets quickly dissociate in 2 ps at the molecule/TiO2 interface, and this dissociation outcompetes the relatively slow singlet fission process. The addition …


Surface And Structural Modification Of Carbon Electrodes For Electroanalysis And Electrochemical Conversion, Yan Zhang Jan 2018

Surface And Structural Modification Of Carbon Electrodes For Electroanalysis And Electrochemical Conversion, Yan Zhang

Theses and Dissertations--Chemistry

Electrocatalysis is key to both sensitive electrochemical sensing and efficient electrochemical energy conversion. Despite high catalytic activity, traditional metal catalysts have poor stability, low selectivity, and high cost. Metal-free, carbon-based materials are emerging as alternatives to metal-based catalysts because of their attractive features including natural abundance, environmental friendliness, high electrical conductivity, and large surface area. Altering surface functionalities and heteroatom doping are effective ways to promote catalytic performance of carbon-based catalysts. The first chapter of this dissertation focuses on developing electrode modification methods for electrochemical sensing of biomolecules. After electrochemical pretreatment, glassy carbon demonstrates impressive figures-of-merit in detecting small, redox-active …


Nanoparticle Orientation To Control Rna Loading And Ligand Display On Extracellular Vesicles For Cancer Regression, Fengmei Pi, Daniel W. Binzel, Tae Jin Lee, Zhefeng Li, Meiyan Sun, Piotr G. Rychahou, Hui Li, Farzin Haque, Shaoying Wang, Carlo M. Croce, Bin Guo, B. Mark Evers, Peixuan Guo Jan 2018

Nanoparticle Orientation To Control Rna Loading And Ligand Display On Extracellular Vesicles For Cancer Regression, Fengmei Pi, Daniel W. Binzel, Tae Jin Lee, Zhefeng Li, Meiyan Sun, Piotr G. Rychahou, Hui Li, Farzin Haque, Shaoying Wang, Carlo M. Croce, Bin Guo, B. Mark Evers, Peixuan Guo

Markey Cancer Center Faculty Publications

Nanotechnology offers many benefits, and here we report an advantage of applying RNA nanotechnology for directional control. The orientation of arrow-shaped RNA was altered to control ligand display on extracellular vesicle membranes for specific cell targeting, or to regulate intracellular trafficking of small interfering RNA (siRNA) or microRNA (miRNA). Placing membrane-anchoring cholesterol at the tail of the arrow results in display of RNA aptamer or folate on the outer surface of the extracellular vesicle. In contrast, placing the cholesterol at the arrowhead results in partial loading of RNA nanoparticles into the extracellular vesicles. Taking advantage of the RNA ligand for …


Engineering Zinc Oxide Nanoparticles To Be Used As Nanofertilizers, Zeinah Elhaj Baddar Jan 2018

Engineering Zinc Oxide Nanoparticles To Be Used As Nanofertilizers, Zeinah Elhaj Baddar

Theses and Dissertations--Plant and Soil Sciences

Zinc deficient soils, or soils with low Zn bioavailability, are widespread, which exacerbates Zn deficiency in human as crops grown on these soils have low Zn content. Often crop yields are also compromised. Fertilizers based on soluble Zn salts often have limited efficacy in such soils. In this research, we evaluate the performance of polymer coated and bare ZnO nanoparticles (NPs) in an attempt to overcome limitations of soluble Zn salts in alkaline soils. We first synthesized 20-30 nm bare ZnO NPs with different surface chemistries to impart colloidal stability to the particles. Bare ZnO were treated in phosphate solution …


Synergistic Interactions Of H2 And N2 With Molten Gallium In The Presence Of Plasma, Maria L. Carreon, Daniel F. Jaramillo-Cabanzo, Indira Chaudhuri, Madhu Menon, Mahendra K. Sunkara Dec 2017

Synergistic Interactions Of H2 And N2 With Molten Gallium In The Presence Of Plasma, Maria L. Carreon, Daniel F. Jaramillo-Cabanzo, Indira Chaudhuri, Madhu Menon, Mahendra K. Sunkara

Physics and Astronomy Faculty Publications

The present study examines the interaction of hydrogen and nitrogen plasmas with gallium in an effort to gain insights into the mechanisms behind the synergetic effect of plasma and a catalytic metal. Absorption/desorption experiments were performed, accompanied by theoretical-computational calculations. Experiments were carried out in a plasma-enhanced, Ga-packed, batch reactor and entailed monitoring the change in pressure at different temperatures. The results indicated a rapid adsorption/dissolution of the gas into the molten metal when gallium was exposed to plasma, even at a low temperature of 100 °C. The experimental observations, when hydrogen was used, indicate that gallium acts as a …