Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Additively Manufactured Polymer And Metal Lattice Structures With Eulerian Path, Adeeb Ibne Alam Aug 2022

Additively Manufactured Polymer And Metal Lattice Structures With Eulerian Path, Adeeb Ibne Alam

Electronic Theses and Dissertations

Lattice structure manufacturing with polymers and metals can benefit from the use of Eulerian paths. In this research, two types of lattice fabrication methods are studied where the Eulerian path can be applicable. Polymer lattice is improved by using a new assembly design, while a new way of metal lattice fabrication is discussed.

For the fused filament fabrication process, a new interlocking design and assemble-based lattice structure building approach is investigated by increasing continuity in layers and avoiding support structures. To minimize contour plurality, Eulerian paths between the edges were enforced. Two configurations in the form of cubic and octet …


Effects Of Fiber Orientation On The Coefficient Of Thermal Expansion Of Fiber-Filled Polymer Systems In Large Format Polymer Extrusion-Based Additive Manufacturing, José Luis Colón Quintana, Lucinda Slattery, Jon Pinkham, Joanna Keaton, Roberto A. Lopez-Anido, Keith Sharp Apr 2022

Effects Of Fiber Orientation On The Coefficient Of Thermal Expansion Of Fiber-Filled Polymer Systems In Large Format Polymer Extrusion-Based Additive Manufacturing, José Luis Colón Quintana, Lucinda Slattery, Jon Pinkham, Joanna Keaton, Roberto A. Lopez-Anido, Keith Sharp

Civil Engineering Faculty Scholarship

Large format polymer extrusion-based additive manufacturing has been studied recently due to its capacity for high throughput, customizable bead size and geometry, and ability to manufacture large parts. Samples from three fiber-filled amorphous thermoplastic materials 3D printed using a Masterprint 3X machine from Ingersoll Machine Tools were studied, along with their neat counterparts. Characterization techniques included thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and thermo-mechanical analysis (TMA). TGA results showed that the fillers decreased the degradation temperature for most of the materials investigated, with a 30°C decrease for polycarbonate (PC) and a 12°C decrease for polyethylene terephthalate glycol (PETG). For …


Numerical Modeling And Experimental Investigation Of Effective Elastic Properties Of The 3d Printed Gyroid Infill, Philip Bean, Roberto A. Lopez-Anido, Senthil Vel Feb 2022

Numerical Modeling And Experimental Investigation Of Effective Elastic Properties Of The 3d Printed Gyroid Infill, Philip Bean, Roberto A. Lopez-Anido, Senthil Vel

Civil Engineering Faculty Scholarship

A numerical homogenization approach is presented for the effective elastic moduli of 3D printed cellular infills. A representative volume element of the infill geometry is discretized using either shell or solid elements and analyzed using the finite element method. The elastic moduli of the bulk cellular material are obtained through longitudinal and shear deformations of a representative volume element under periodic boundary conditions. The method is used to analyze the elastic behavior of gyroid infills for varying infill densities. The approach is validated by comparing the Young’s modulus and Poisson’s ratio with those obtained from compression experiments. Results indicate that …