Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Engineering

Open Source Low-Cost Power Monitoring System, Shane W. Oberloier, Joshua M. Pearce Mar 2019

Open Source Low-Cost Power Monitoring System, Shane W. Oberloier, Joshua M. Pearce

Joshua M. Pearce

This study presents an entirely open-source, low-cost power monitoring system capable of many types of measurements including both loads and supplies such as solar photovoltaic systems. In addition, the system can be fabricated using only open source software and hardware. The design revolves around the Digital Universal Energy Logger (DUEL) Node, which is responsible for reading and properly scaling the voltage and current of a particular load, and then serializing it via an on-board ATTiny85 chip. The configuration of the DUEL node allows for custom sensitivity ranges, and can handle up to 50 A and 300 V. Up to 127 …


Energy Payback Time Of A Solar Photovoltaic Powered Waste Plastic Recyclebot System, Shan Zhong, Pratiksha Rakhe, Joshua M. Pearce Mar 2018

Energy Payback Time Of A Solar Photovoltaic Powered Waste Plastic Recyclebot System, Shan Zhong, Pratiksha Rakhe, Joshua M. Pearce

Joshua M. Pearce

The growth of both plastic consumption and prosumer 3-D printing are driving an interest in producing 3-D printer filaments from waste plastic. This study quantifies the embodied energy of a vertical DC solar photovoltaic (PV) powered recyclebot based on life cycle energy analysis and compares it to horizontal AC recyclebots, conventional recycling, and the production of a virgin 3-D printer filament. The energy payback time (EPBT) is calculated using the embodied energy of the materials making up the recyclebot itself and is found to be about five days for the extrusion of a poly lactic acid (PLA) filament or 2.5 …


Fabricating Ordered 2-D Nano-Structured Arrays Using Nanosphere Lithography, Chenlong Zhang, Sandra Cvetanovic, Joshua M. Pearce Mar 2018

Fabricating Ordered 2-D Nano-Structured Arrays Using Nanosphere Lithography, Chenlong Zhang, Sandra Cvetanovic, Joshua M. Pearce

Joshua M. Pearce

Recent advances in the use of plasmonic metamaterials to improve absorption of light in thin-film solar photovoltaic devices has created a demand for a scalable method of patterning large areas with metal nanostructures deposited in an ordered array. This article describes two methods of fabricating ordered 2D nanosphere colloidal films: spin coating and interface coating. The two methods are compared and parameter optimization discussed. The study reveals that:

• For smaller nanosphere sizes, spin coating is more favorable, while for larger nanospheres, the angled interface coating provides more coverage and uniformity.

• A surfactant-free approach for interface coating is developed …


General Design Procedures For Airport-Based Solar Photovoltaic Systems, Anurag Anurag, Jiemin Zhang, Jephias Gwamuri, Joshua M. Pearce Mar 2018

General Design Procedures For Airport-Based Solar Photovoltaic Systems, Anurag Anurag, Jiemin Zhang, Jephias Gwamuri, Joshua M. Pearce

Joshua M. Pearce

A source of large surface areas for solar photovoltaic (PV) farms that has been largely overlooked in the 13,000 United States of America (U.S.) airports. This paper hopes to enable PV deployments in most airports by providing an approach to overcome the three primary challenges identified by the Federal Aviation Administration (FAA): (1) reflectivity and glare; (2) radar interference; and (3) physical penetration of airspace. First, these challenges and precautions that must be adhered to for safe PV projects deployment at airports are reviewed and summarized. Since one of the core concerns for PV and airport symbiosis is solar panel …


Design Of Post-Consumer Modification Of Standard Solar Modules To Form Large-Area Building-Integrated Photovoltaic Roof Slates, Joshua M. Pearce, Jay Meldrum, Nolan Osborne Mar 2018

Design Of Post-Consumer Modification Of Standard Solar Modules To Form Large-Area Building-Integrated Photovoltaic Roof Slates, Joshua M. Pearce, Jay Meldrum, Nolan Osborne

Joshua M. Pearce

Building-integrated photovoltaic (BIPV) systems have improved aesthetics but generally cost far more than conventional PV systems because of small manufacturing scale. Thus, in the short and medium term, there is a need for a BIPV mounting system that utilizes conventional modules. Such a design is provided here with a novel modification of conventional photovoltaic (PV) modules to allow them to act as BIPV roofing slates. The open-source designs for the mechanical components necessary to provide the post-consumer conversion for a conventional PV module are provided, and prototypes are fabricated and installed on a mock roof system along with control modules …


The Application Of Lidar To Assessment Of Rooftop Solar Photovoltaic Deployment Potential In A Municipal District Unit, Ha T. Nguyen, Joshua M. Pearce, Rob Harrap, Gerald Barber Apr 2012

The Application Of Lidar To Assessment Of Rooftop Solar Photovoltaic Deployment Potential In A Municipal District Unit, Ha T. Nguyen, Joshua M. Pearce, Rob Harrap, Gerald Barber

Joshua M. Pearce

A methodology is provided for the application of Light Detection and Ranging (LiDAR) to automated solar photovoltaic (PV) deployment analysis on the regional scale. Challenges in urban information extraction and management for solar PV deployment assessment are determined and quantitative solutions are offered. This paper provides the following contributions: (i) a methodology that is consistent with recommendations from existing literature advocating the integration of cross-disciplinary competences in remote sensing (RS), GIS, computer vision and urban environmental studies; (ii) a robust methodology that can work with low-resolution, incomprehensive data and reconstruct vegetation and building separately, but concurrently; (iii) recommendations for future …


Dispatch Strategy And Model For Hybrid Photovoltaic And Trigeneration Power Systems, Amir Nosrat, Joshua M. Pearce Dec 2010

Dispatch Strategy And Model For Hybrid Photovoltaic And Trigeneration Power Systems, Amir Nosrat, Joshua M. Pearce

Joshua M. Pearce

The advent of small scale combined heat and power (CHP) systems has provided the opportunity for in-house power backup of residential-scale photovoltaic (PV) arrays. These hybrid systems enjoy a symbiotic relationship between components, but have large thermal energy wastes when operated to provide 100% of the electric load. In a novel hybrid system is proposed here of PV-trigeneration. In order to reduce waste from excess heat, an absorption chiller has been proposed to utilize the CHP-produced thermal energy for cooling of PV-CHP system. This complexity has brought forth entirely new levels of system dynamics and interaction that require numerical simulation …


Institutional-Scale Operational Symbiosis Of Photovoltaic And Cogeneration Energy Systems, M. Mostofi, A. H. Nosrat, Joshua M. Pearce Dec 2010

Institutional-Scale Operational Symbiosis Of Photovoltaic And Cogeneration Energy Systems, M. Mostofi, A. H. Nosrat, Joshua M. Pearce

Joshua M. Pearce

Due to the negative environmental effects of fossil fuel combustion, there is a growing interest in both improved efficiency in energy management and a large-scale transition to renewable energy systems. Using both of these strategies, a large institutional-scale hybrid energy system is proposed here, which incorporates both solar photovoltaic energy conversion to supply renewable energy and cogeneration to improve efficiency. In this case, the photovoltaic reduces the run time for the cogeneration to meet load, particularly in peaking air conditioning times. In turn, however, the cogeneration system is used to provide power back up for the photovoltaic during the night …


Producer Responsibility And Recycling Solar Photovoltaic Modules, N. C. Mcdonald, Joshua M. Pearce Jul 2010

Producer Responsibility And Recycling Solar Photovoltaic Modules, N. C. Mcdonald, Joshua M. Pearce

Joshua M. Pearce

Rapid expansion of the solar photovoltaic (PV) industry is quickly causing solar to play a growing importance in the energy mix of the world. Over the full life cycle, although to a smaller degree than traditional energy sources, PV also creates solid waste. This paper examines the potential need for PV recycling policies by analyzing existing recycling protocols for the five major types of commercialized PV materials. The amount of recoverable semiconductor material and glass in a 1 m2 area solar module for the five types of cells is quantified both physically and the profit potential of recycling is determined. …


Estimating Potential Photovoltaic Yield With R.Sun And The Open Source Geographical Resources Analysis Support System, H. T. Nguyen, Joshua M. Pearce Dec 2009

Estimating Potential Photovoltaic Yield With R.Sun And The Open Source Geographical Resources Analysis Support System, H. T. Nguyen, Joshua M. Pearce

Joshua M. Pearce

The package r.sun within the open source Geographical Resources Analysis Support System (GRASS) can be used to compute insolation including temporal and spatial variation of albedo and solar photovoltaic yield. A complete algorithm is presented covering the steps of data acquisition and preprocessing to post-simulation whereby candidate lands for incoming solar farms projects are identified. The optimal resolution to acquire reliable solar energy outputs to be integrated into PV system design software was determined to be 1 square km. A case study using the algorithm developed here was performed on a North American region encompassing fourteen counties in South-eastern Ontario. …


Expanding Photovoltaic Penetration With Residential Distributed Generation From Hybrid Solar Photovoltaic Combined Heat And Power Systems, Joshua M. Pearce Jul 2009

Expanding Photovoltaic Penetration With Residential Distributed Generation From Hybrid Solar Photovoltaic Combined Heat And Power Systems, Joshua M. Pearce

Joshua M. Pearce

The recent development of small scale combined heat and power (CHP) systems has provided the opportunity for in-house power backup of residential-scale photovoltaic (PV) arrays. This paper investigates the potential of deploying a distributed network of PV + CHP hybrid systems in order to increase the PV penetration level in the U.S. The temporal distribution of solar flux, electrical and heating requirements for representative U.S. single family residences were analyzed and the results clearly show that hybridizing CHP with PV can enable additional PV deployment above what is possible with a conventional centralized electric generation system. The technical evolution of …