Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Multiple New-Particle Growth Pathways Observed At The Us Doe Southern Great Plains Field Site, Anna L. Hodshire, Michael J. Lawler, Jun Zhao, John Ortega, Coty Jen, Taina Yli-Juuti, Jared F. Brewer, Jack K. Kodros, Kelley C. Barsanti, Dave R. Hanson, Peter H. Mcmurry, James N. Smith, Jeffery R. Pierce Jul 2016

Multiple New-Particle Growth Pathways Observed At The Us Doe Southern Great Plains Field Site, Anna L. Hodshire, Michael J. Lawler, Jun Zhao, John Ortega, Coty Jen, Taina Yli-Juuti, Jared F. Brewer, Jack K. Kodros, Kelley C. Barsanti, Dave R. Hanson, Peter H. Mcmurry, James N. Smith, Jeffery R. Pierce

Civil and Environmental Engineering Faculty Publications and Presentations

New-particle formation (NPF) is a significant source of aerosol particles into the atmosphere. However, these particles are initially too small to have climatic importance and must grow, primarily through net uptake of low volatility species, from diameters ∼ 1 to 30–100 nm in order to potentially impact climate. There are currently uncertainties in the physical and chemical processes associated with the growth of these freshly formed particles that lead to uncertainties in aerosol-climate modeling. Four main pathways for new-particle growth have been identified: condensation of sulfuric-acid vapor (and associated bases when available), condensation of organic vapors, uptake of organic acids …


Analyzing Experimental Data And Model Parameters: Implications For Predictions Of Soa Using Chemical Transport Models, Kelley Barsanti, Annmarie G. Carlton, Serena H. Chung Jan 2013

Analyzing Experimental Data And Model Parameters: Implications For Predictions Of Soa Using Chemical Transport Models, Kelley Barsanti, Annmarie G. Carlton, Serena H. Chung

Civil and Environmental Engineering Faculty Publications and Presentations

Despite critical importance for air quality and climate predictions, accurate representation of secondary organic aerosol (SOA) formation remains elusive. An essential addition to the ongoing discussion of improving model predictions is an acknowledgement of the linkages between experimental conditions, parameter optimization and model output, as well as the linkage between empirically-derived partitioning parameters and the physicochemical properties of SOA they represent in models. In this work, a "best available" set of SOA modeling parameters is selected by comparing predicted SOA yields and mass concentrations with observed yields and mass concentrations from a comprehensive list of published smog chamber studies. Evaluated …


Organic Particulate Matter Formation At Varying Relative Humidity Using Surrogate Secondary And Primary Organic Compounds With Activity Corrections In The Condensed Phase Obtained Using A Method Based On The Wilson Equation, James F. Pankow, E. I. Chang Jan 2010

Organic Particulate Matter Formation At Varying Relative Humidity Using Surrogate Secondary And Primary Organic Compounds With Activity Corrections In The Condensed Phase Obtained Using A Method Based On The Wilson Equation, James F. Pankow, E. I. Chang

Civil and Environmental Engineering Faculty Publications and Presentations

Secondary organic aerosol (SOA) formation in the atmosphere is currently often modeled using a multiple lumped "two-product" (N · 2p) approach. The N · 2p approach neglects: 1) variation of activity coefficient (i) values and mean molecular weight MW in the particulate matter (PM) phase; 2) water uptake into the PM; and 3) the possibility of phase separation in the PM. This study considers these effects by adopting an (N ·2p)pMW, approach (is a phase index). Specific chemical structures are assigned to 25 lumped SOA compounds and to 15 representative primary organic aerosol (POA) compounds to allow calculation of i …