Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Optimal Control Of A Class Of One-Dimensional Nonlinear Distributed Parameter Systems With Discrete Actuators, Radhakant Padhi, S. N. Balakrishnan Jan 2005

Optimal Control Of A Class Of One-Dimensional Nonlinear Distributed Parameter Systems With Discrete Actuators, Radhakant Padhi, S. N. Balakrishnan

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Combining the principles of dynamic inversion and optimization theory, a new approach is presented for stable control of a class of one-dimensional nonlinear distributed parameter systems with a finite number of actuators in the spatial domain. Unlike the existing ''approximate-then-design'' and ''design-then-approximate'' techniques, this approach does not use any approximation either of the system dynamics or of the resulting controller. The formulation has more practical significance because one can implement a set of discrete controllers with relative ease. To demonstrate the potential of the proposed technique, a real-life temperature control problem for a heat transfer application is solved through simulations. …


A Neural Network Based Optimal Wide Area Control Scheme For A Power System, Ganesh K. Venayagamoorthy, Swakshar Ray Jan 2005

A Neural Network Based Optimal Wide Area Control Scheme For A Power System, Ganesh K. Venayagamoorthy, Swakshar Ray

Electrical and Computer Engineering Faculty Research & Creative Works

With deregulation of the power industry, many tie lines between control areas are driven to operate near their maximum capacity, especially those serving heavy load centers. Wide area control systems (WACSs) using wide-area or global signals can provide remote auxiliary control signals to local controllers such as automatic voltage regulators, power system stabilizers, etc to damp out inter-area oscillations. This paper presents the design and the DSP implementation of a nonlinear optimal wide area controller based on adaptive critic designs and neural networks for a power system on the real-time digital simulator (RTDS©). The performance of the WACS as a …


A Neural Network Based Wide Area Monitor For A Power System, Xiaomeng Li, Ganesh K. Venayagamoorthy Jan 2005

A Neural Network Based Wide Area Monitor For A Power System, Xiaomeng Li, Ganesh K. Venayagamoorthy

Electrical and Computer Engineering Faculty Research & Creative Works

With the deregulation of power industry, many tie lines between control areas are driven to operate near their maximum capacity, especially those serving heavy load centers. Wide area controllers (WACs) using wide-area or global signals can provide remote auxiliary control signals to local controllers such as automatic voltage regulators, power system stabilizers, etc to damp out inter-area oscillations. The power system is highly nonlinear system with fast changing dynamics. In order to have an efficient WAC, an online system monitor/predictor is required to provide inter-area information to the WAC from time to time. This paper presents the design of an …