Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Engineering

Calibration Of The Johnson–Cook Model At High Temperatures For An Ultra-High Strength Crnimov Steel, Mario F. Buchely, S. Chakraborty, V. Athavale, Laura Bartlett, Ronald J. O'Malley, D. Field, K. Limmer, K. Sebeck Jul 2023

Calibration Of The Johnson–Cook Model At High Temperatures For An Ultra-High Strength Crnimov Steel, Mario F. Buchely, S. Chakraborty, V. Athavale, Laura Bartlett, Ronald J. O'Malley, D. Field, K. Limmer, K. Sebeck

Materials Science and Engineering Faculty Research & Creative Works

This paper presents a study on the thermo-mechanical behavior of an ultra-high strength CrNiMoV steel at high temperatures and medium strain rates through hot tensile tests. The material was examined in two conditions: as-cast/heat-treated (AC/HT) and as-rolled (AR). Tensile tests were conducted at temperatures of 800,900,1000,1100, and 1200°C, and strain rates of 0.1,1, and 10s−1. Inclusion and porosity analysis was also performed on the tensile specimens. The results revealed that the flow stress decreased by approximately 70% on average from 800°C to 1200°C, while increasing by approximately 32% on average from 0.1s−1 to 10s−1 in strain rate. The elongation exhibited …


Corrosion Protection Mechanisms Of Trivalent Chromium Based Passivations On Γ-Znni Coated Al6061-T6 Alloy, Kevin Foster Jan 2022

Corrosion Protection Mechanisms Of Trivalent Chromium Based Passivations On Γ-Znni Coated Al6061-T6 Alloy, Kevin Foster

Doctoral Dissertations

“The role of cobalt in trivalent chromium passivations (TCPs) to improve corrosion resistance of γ-ZnNi coated steel and aluminum is based on its effect on hexavalent chromium content in the passive layer. Investigations of both a cobalt-containing and cobalt-free TCP on SAE 1008 steel indicated that both passivations protect well for up to 1000 hours in neutral salt spray exposure (SSE). A repetition on Al 6061-T6 alloy indicated that TCP performed much better than cobalt-free TCP implicating the underlying substrate. Optical and electron micrographs indicated physical changes such as crack thickness, crack density, passivation porosity, and passivation thickness existed between …


Characterization Of Cermet Fuel For Nuclear Thermal Propulsion (Ntp), James Floyd Mudd Jan 2022

Characterization Of Cermet Fuel For Nuclear Thermal Propulsion (Ntp), James Floyd Mudd

Masters Theses

“A manned flight to Mars is met with many technical challenges, not the least of which is the development of propulsion technology capable of moving a transit vehicle from Earth orbit to Mars orbit. NASA is investigating Nuclear Thermal Propulsion (NTP) as a way of reducing flight time and providing the option for a mid-mission abort. NTP, which uses a high temperature nuclear reactor to heat a propellant, requires advanced fuel materials capable of withstanding temperatures well in excess of 2000 K. Among the fuel options are ceramic metal (cermet) composites composed of refractory metals and Ultra-High Temperature Ceramics (UHTCs). …


An Overview Of Ceramic Molds For Investment Casting Of Nickel Superalloys, Janos E. Kanyo, Stefan Schafföner, R. Sharon Uwanyuze, Kaitlynn S. Leary Dec 2020

An Overview Of Ceramic Molds For Investment Casting Of Nickel Superalloys, Janos E. Kanyo, Stefan Schafföner, R. Sharon Uwanyuze, Kaitlynn S. Leary

Materials Science and Engineering Faculty Research & Creative Works

Accelerating advancements in technological systems have demonstrated a need for alloys with drastically improved thermomechanical and chemical properties, called superalloys. Ceramic molds are typically used in near-net shape investment casting processes of superalloy components due to their chemical inertness and high-temperature capabilities. Ceramic molds, however, often suffer from shortcomings in vital properties including flexural strength, thermal shock resistance, permeability, dimensional stability, corrosion resistance, and leachability, which have restricted their ability to adequately process modern alloy castings. This study analyses these limitations and illustrates how to address them, particularly regarding ceramic mold and slurry design, processing of shells and cores, material …


Synthesis And Characterization Of Free-Stand Graphene/Silver Nanowire/Graphene Nano Composite As Transparent Conductive Film With Enhanced Stiffness, Chuanrui Guo, Yanxiao Li, Yanping Zhu, Chenglin Wu, Genda Chen Jul 2020

Synthesis And Characterization Of Free-Stand Graphene/Silver Nanowire/Graphene Nano Composite As Transparent Conductive Film With Enhanced Stiffness, Chuanrui Guo, Yanxiao Li, Yanping Zhu, Chenglin Wu, Genda Chen

Civil, Architectural and Environmental Engineering Faculty Research & Creative Works

As-grown graphene via chemical vapor deposition (CVD) has potential defects, cracks, and disordered grain boundaries induced by the synthesis and transfer process. Graphene/silver nanowire/graphene (Gr/AgNW/Gr) sandwich composite has been proposed to overcome these drawbacks significantly as the AgNW network can provide extra connections on graphene layers to enhance the stiffness and electrical conductivity. However, the existing substrate (polyethylene terephthalate (PET), glass, silicon, and so on) for composite production limits its application and mechanics behavior study. In this work, a vacuum annealing method is proposed and validated to synthesize the free-stand Gr/AgNW/Gr nanocomposite film on transmission electron microscopy (TEM) grids. AgNW …


Synthesis And Characterization Of Free-Stand Graphene/Silver Nanowire/Graphene Nano Composite As Transparent Conductive Film With Enhanced Stiffness, Chuanrui Guo, Yanxiao Li, Yanping Zhu, Chenglin Wu, Genda Chen Jul 2020

Synthesis And Characterization Of Free-Stand Graphene/Silver Nanowire/Graphene Nano Composite As Transparent Conductive Film With Enhanced Stiffness, Chuanrui Guo, Yanxiao Li, Yanping Zhu, Chenglin Wu, Genda Chen

Civil, Architectural and Environmental Engineering Faculty Research & Creative Works

As-grown graphene via chemical vapor deposition (CVD) has potential defects, cracks, and disordered grain boundaries induced by the synthesis and transfer process. Graphene/silver nanowire/graphene (Gr/AgNW/Gr) sandwich composite has been proposed to overcome these drawbacks significantly as the AgNW network can provide extra connections on graphene layers to enhance the stiffness and electrical conductivity. However, the existing substrate (polyethylene terephthalate (PET), glass, silicon, and so on) for composite production limits its application and mechanics behavior study. In this work, a vacuum annealing method is proposed and validated to synthesize the free-stand Gr/AgNW/Gr nanocomposite film on transmission electron microscopy (TEM) grids. AgNW …


Follow-Up And Kinetic Model Selection Of Dinitro Pentamethylene Tetramine (Dpt), Hany A. Elazab, M. M. Seleet, Said M.A. Hassanein, M. A. Radwan, M. A. Sadek Jun 2019

Follow-Up And Kinetic Model Selection Of Dinitro Pentamethylene Tetramine (Dpt), Hany A. Elazab, M. M. Seleet, Said M.A. Hassanein, M. A. Radwan, M. A. Sadek

Chemical and Biochemical Engineering Faculty Research & Creative Works

The Synthetic route of Cyclotetramethylene Tetramine is implemented through the reaction of hexamine and nitrating mixture that is formed as a result of a reaction between ammonium nitrate and fuming nitric acid. The reaction medium includes acetic acid, acetic anhydride and p-formaldehyde. This synthetic pathway is relatively long and both of hexamine dinitrate and Dinitro Pentamethylene Tetramine (DPT) are considered as the two main intermediate compounds. The former compound (hexamine dinitrate) was prepared, purified, and then characterized. Conversion of hexamine dinitrate into DPT has been followed up experimentally at different temperatures. Various factors including temperature and time has been investigated. …


Characterization Of The Surface Condition In Aa6061 Resulting From Deep Rolling As A Function Of Common Industrial Parameters, Andrew Kenneth Layer Jan 2019

Characterization Of The Surface Condition In Aa6061 Resulting From Deep Rolling As A Function Of Common Industrial Parameters, Andrew Kenneth Layer

Masters Theses

"Roller burnishing is widely used in industry to improve the surface finish and fatigue life of components. As weight reduction continues to grow in the automotive and transportation industries, deep rolling can help maintain product performance by mitigating the increase in component stresses resulting from lower weight systems. Deep rolling parameters such as tool, applied angle, feed rate, spindle speeds, and relative tool direction all affect cycle time, product performance, and appearance. The effects of common industrial parameters on the resultant surface roughness and residual stress profiles were studied in this investigation. The samples were manufactured on a CNC lathe …


Concrete Roughness Characterization Using Laser Profilometry For Fiber-Reinforced Polymer Sheet Application, Norbert H. Maerz, Poornima Chepur, John J. Myers, Justin Linz Jan 2001

Concrete Roughness Characterization Using Laser Profilometry For Fiber-Reinforced Polymer Sheet Application, Norbert H. Maerz, Poornima Chepur, John J. Myers, Justin Linz

Geosciences and Geological and Petroleum Engineering Faculty Research & Creative Works

The failure of a reinforced concrete member strengthened with fiberreinforced polymer (FRP) laminates may be caused by crushing of concrete, rupture of FRP laminates, or delamination of the FRP sheet. Therefore, the effectiveness and failure mode of FRP sheets applied to beams and columns is related to the degree of adhesion of the epoxy to the concrete surface. When a peeling or delamination failure can be avoided, a more effective engagement of the FRP sheet occurs, which results in more efficient use of the material. One of the principal factors affecting the bond behavior between the concrete and epoxy is …


Processing And Characterization Of Samarium And Manganese Modified Lead Titanate Thin Film, Chen-Lung Fan, Wayne Huebner Jan 1994

Processing And Characterization Of Samarium And Manganese Modified Lead Titanate Thin Film, Chen-Lung Fan, Wayne Huebner

Materials Science and Engineering Faculty Research & Creative Works

Samarium and manganese modified lead titanate thin films were fabricated by spin-coating an amorphous citrate precursor. These films transformed into an oxide film upon heat treatment at 400 degrees Celcius or above. Relatively large area and crack-free thin films could be obtained by this process both easily and inexpensively. The rheological behavior of the precursor solution, as well as its thermal decomposition and phase development were studied by means of DSC/TGA and XRD. The thickness and grain size of the oxide film were examined by TEM and SEM.


Synthesis And Characterization Of Barium Lanthanum Titanates, Jyoti P. Guha Jan 1991

Synthesis And Characterization Of Barium Lanthanum Titanates, Jyoti P. Guha

Materials Science and Engineering Faculty Research & Creative Works

Ternary compounds in the system BaO—TiO2—La2O3 were prepared by the solid‐state reaction technique at temperatures between 1300° and 1400°C using precursor oxides as the starting materials. In an alternative processing technique, BaTiO3 was reacted with appropriate proportions of prefabricated lanthanum titanates at 1350°C to obtain the compounds. Two compounds were identified in the TiO2‐rich region of the system. The X‐ray powder diffraction pattern of a compound with a chemical composition BaLa2Ti3O10 (BaO·La2O3·3TiO2) is indexed on the basis of an orthorhombic unit …